Net::DNS::Nameserver(3pm) User Contributed Perl Documentation Net::DNS::Nameserver(3pm)

NAME
Net::DNS::Nameserver — DNS server class
SYNOPSIS
use Net::DNS::Nameserver;
my $nameserver = new Net::DNS::Nameserver (
LocalAddr => ['::1" , '127.0.0.1'],
ZoneFile => "filename"
)i
my $nameserver = new Net::DNS::Nameserver (
LocalAddr => '10.1.2.3",
LocalPort => 5353,
ReplyHandler => \&reply_handler
)i
DESCRIPTION

Net::DNS::Nameserver offers a simple mechanism for instantiation of customised DNS server objects
intended to provide test responses to queries emanating from a client resolver.

It is not, nor will it ever be, a general-purpose DNS nameserver implementation.

See “EXAMPLE” for an example.

METHODS
new

$nameserver = new Net::DNS::Nameserver (
LocalAddr => ['::1" , '127.0.0.1']1,
ZoneFile => "filename"
)i

$nameserver = new Net::DNS::Nameserver (
LocalAddr => '10.1.2.3"',
LocalPort => 5353,
ReplyHandler => \&reply_handler,
Verbose => 1,
Truncate => 0

)i
Returns a Net::DNS::Nameserver object, or undef if the object could not be created.

Each instance is configured using the following optional arguments:

LocalAddr IP address on which to listen Defaults to loopback address
LocalPort Port on which to listen Defaults to 53
ZoneFile Name of file containing RRs

accessed using the default
reply-handling subroutine

ReplyHandler Reference to customised
reply-handling subroutine
NotifyHandler Reference to reply-handling

subroutine for queries with

opcode NOTIFY (RFC1996)
UpdateHandler Reference to reply-handling

subroutine for queries with

opcode UPDATE (RFC2136)
Verbose Report internal activity Defaults to 0 (off)
Truncate Truncates UDP packets that

perl v5.30.0 2020-02-22 1

Net::DNS::Nameserver(3pm) User Contributed Perl Documentation Net::DNS::Nameserver(3pm)

are too big for the reply Defaults to 1 (on)
IdleTimeout TCP clients are disconnected

if they are idle longer than

this duration Defaults to 120 (secs)

The LocalAddr attribute may alternatively be specified as a list of IP addresses to listen to. If the
10::Socket::IP library package is available on the system this may also include IPv6 addresses.

The ReplyHandler subroutine is passed the query name, query class, query type and optionally an argument
containing the peerhost, the incoming query, and the name of the incoming socket (sockethost). It must
either return the response code and references to the answer, authority, and additional sections of the
response, or undef to leave the query unanswered. Common response codes are:

NOERROR No error

FORMERR Format error

SERVFATIL Server failure

NXDOMAIN Non-existent domain (name doesn't exist)
NOTIMP Not implemented

REFUSED Query refused

For advanced usage it may also contain a headermask containing an hashref with the settings for the aa,
ra, and ad header bits. The argument is of the form { ad => 1, aa => 0, ra => 1 }.

EDNS options may be specified in a similar manner using optionmask { $optioncode => $value,
Soptionname => S$value }.

See RFC 1035 and the IANA dns-parameters file for more information:

ftp://ftp.rfc-editor.org/in-notes/rfcl035.txt
http://www.isi.edu/in-notes/iana/assignments/dns—-parameters

The nameserver will listen for both UDP and TCP connections. On Unix-like systems, the program will
probably have to run as root to listen on the default port, 53. A non-privileged user should be able to
listen on ports 1024 and higher.

UDP reply truncation functionality was introduced in VERSION 830. The size limit is determined by the
EDNSO size advertised in the query, otherwise 512 is used. If you want to do packet truncation yourself you
should set Truncate to 0 and truncate the reply packet in the code of the ReplyHandler.

See “EXAMPLE” for an example.

main_loop
Sns->main_loop;

Start accepting queries. Calling main_loop never returns.

loop_once
$Sns—>loop_once([TIMEOUT_IN_SECONDS]);

Start accepting queries, but returns. If called without a parameter, the call will not return until a request has
been received (and replied to). Otherwise, the parameter specifies the maximum time to wait for a request.
A zero timeout forces an immediate return if there is nothing to do.

Handling a request and replying obviously depends on the speed of ReplyHandler. Assuming a fast
ReplyHandler, loop_once should spend just a fraction of a second, if called with a timeout value of 0.0
seconds. One exception is when an AXFR has requested a huge amount of data that the OS is not ready to
receive in full. In that case, it will remain in a loop (while servicing new requests) until the reply has been
sent.

In case loop_once accepted a TCP connection it will immediately check if there is data to be read from the
socket. If not it will return and you will have to call loop_once() again to check if there is any data waiting
on the socket to be processed. In most cases you will have to count on calling “loop_once” twice.

A code fragment like:

perl v5.30.0 2020-02-22 2

Net::DNS::Nameserver(3pm) User Contributed Perl Documentation Net::DNS::Nameserver(3pm)

Sns—>loop_once (10);
while ($ns—->get_open_tcp()) {
Sns—>1loop_once (0);

}

Would wait for 10 seconds for the initial connection and would then process all TCP sockets until none is
left.

get_open_tcp
In scalar context returns the number of TCP connections for which state is maintained. In array context it
returns 10::Socket objects, these could be useful for troubleshooting but be careful using them.

EXAMPLE
The following example will listen on port 5353 and respond to all queries for A records with the IP address
10.1.2.3. All other queries will be answered with NXDOMAIN. Authority and additional sections
are left empty. The $peerhost variable catches the IP address of the peer host, so that additional filtering
on its basis may be applied.

#!/usr/bin/perl

use strict;
use warnings;
use Net::DNS::Nameserver;

sub reply_handler {
my ($gname, $gclass, $gtype, $peerhost, S$query, S$conn) = @_;
my ($rcode, @ans, @auth, Qadd);

print "Received query from $peerhost to " . $conn->{sockhost} . "\n";
Squery->print;

if ($Sgtype eq "A" && S$gname eq "foo.example.com") {
my (ttl, Srdata) = (3600, "10.1.2.3");
my $rr = new Net::DNS::RR("S$gname $ttl $gclass S$Sgtype S$Srdata");
push @ans, $rr;

$rcode = "NOERROR";

} elsif ($gname eq "foo.example.com") {
$rcode = "NOERROR";

} else {
$rcode = "NXDOMAIN";

mark the answer as authoritative (by setting the 'aa' flag)
my Sheadermask = {aa => 1};

specify EDNS options { option => value }
my Soptionmask = {};

return ($rcode, \@ans, \@auth, \Q@add, S$headermask, S$optionmask);
}
my $ns = new Net::DNS::Nameserver (

LocalPort => 5353,

ReplyHandler => \&reply_ handler,

Verbose => 1

perl v5.30.0 2020-02-22 3

Net::DNS::Nameserver(3pm) User Contributed Perl Documentation Net::DNS::Nameserver(3pm)

) || die "couldn't create nameserver object\n";

Sns->main_loop;

BUGS

Limitations in perl 5.8.6 makes it impossible to guarantee that replies to UDP queries from
Net::DNS::Nameserver are sent from the IP-address they were received on. This is a problem for machines
with multiple IP-addresses and causes violation of RFC2181 section 4. Thus a UDP socket created listening
to INADDR_ANY (all available IP-addresses) will reply not necessarily with the source address being the
one to which the request was sent, but rather with the address that the operating system chooses. This is
also often called “‘the closest address”. This should really only be a problem on a server which has more
than one IP-address (besides localhost — any experience with IPv6 complications here, would be nice). If
this is a problem for you, a work-around would be to not listen to INADDR_ANY but to specify each
address that you want this module to listen on. A separate set of sockets will then be created for each IP-
address.

COPYRIGHT
Copyright (c)2000 Michael Fuhr.

Portions Copyright (¢)2002—-2004 Chris Reinhardt.

Portions Copyright (c)2005 Robert Martin-Legene.

Portions Copyright (¢)2005-2009 O.M, Kolkman, RIPE NCC.
Portions Copyright (¢)2017 Dick Franks.

All rights reserved.
LICENSE

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the name of
the author not be used in advertising or publicity pertaining to distribution of the software without specific
prior written permission.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

SEE ALSO
perl, Net::DNS, Net::DNS::Resolver, Net::DNS::Packet, Net::DNS::Update, Net::DNS::Header,
Net::DNS::Question, Net::DNS::RR, RFC 1035

perl v5.30.0 2020-02-22 4

