
RAND_DRBG(7SSL) OpenSSL RAND_DRBG(7SSL)

NAME
RAND_DRBG − the deterministic random bit generator

SYNOPSIS
#include <openssl/rand_drbg.h>

DESCRIPTION
The default OpenSSL RAND method is based on the RAND_DRBG class, which implements a deterministic

random bit generator (DRBG). A DRBG is a certain type of cryptographically-secure pseudo-random

number generator (CSPRNG), which is described in [NIST SP 800−90A Rev. 1].

While the RAND API is the ’frontend’ which is intended to be used by application developers for obtaining

random bytes, the RAND_DRBG API serves as the ’backend’, connecting the former with the operating

systems’s entropy sources and providing access to the DRBG’s configuration parameters.

Disclaimer

Unless you have very specific requirements for your random generator, it is in general not necessary to

utilize the RAND_DRBG API directly. The usual way to obtain random bytes is to use RAND_bytes (3) or

RAND_priv_bytes (3), see also RAND (7).

Typical Use Cases

Typical examples for such special use cases are the following:

• You want to use your own private DRBG instances. Multiple DRBG instances which are accessed only by

a single thread provide additional security (because their internal states are independent) and better

scalability in multithreaded applications (because they don’t need to be locked).

• You need to integrate a previously unsupported entropy source.

• You need to change the default settings of the standard OpenSSL RAND implementation to meet specific

requirements.

CHAINING
A DRBG instance can be used as the entropy source of another DRBG instance, provided it has itself access

to a valid entropy source. The DRBG instance which acts as entropy source is called the parent DRBG, the

other instance the child DRBG.

This is called chaining. A chained DRBG instance is created by passing a pointer to the parent DRBG as

argument to the RAND_DRBG_new() call. It is possible to create chains of more than two DRBG in a row.

THE THREE SHARED DRBG INSTANCES
Currently, there are three shared DRBG instances, the <master>, <public>, and <private> DRBG. While the

<master> DRBG is a single global instance, the <public> and <private> DRBG are created per thread and

accessed through thread-local storage.

By default, the functions RAND_bytes (3) and RAND_priv_bytes (3) use the thread-local <public> and

<private> DRBG instance, respectively.

The <master> DRBG instance

The <master> DRBG is not used directly by the application, only for reseeding the two other two DRBG

instances. It reseeds itself by obtaining randomness either from os entropy sources or by consuming

randomness which was added previously by RAND_add (3).

The <public> DRBG instance

This instance is used per default by RAND_bytes (3).

The <private> DRBG instance

This instance is used per default by RAND_priv_bytes (3)

LOCKING
The <master> DRBG is intended to be accessed concurrently for reseeding by its child DRBG instances. The

necessary locking is done internally. It is not thread-safe to access the <master> DRBG directly via the

RAND_DRBG interface. The <public> and <private> DRBG are thread-local, i.e. there is an instance of

each per thread. So they can safely be accessed without locking via the RAND_DRBG interface.

1.1.1f 2023-02-06 1

RAND_DRBG(7SSL) OpenSSL RAND_DRBG(7SSL)

Pointers to these DRBG instances can be obtained using RAND_DRBG_get0_master(),

RAND_DRBG_get0_public(), and RAND_DRBG_get0_private(), respectively. Note that it is not

allowed to store a pointer to one of the thread-local DRBG instances in a variable or other memory location

where it will be accessed and used by multiple threads.

All other DRBG instances created by an application don’t support locking, because they are intended to be

used by a single thread. Instead of accessing a single DRBG instance concurrently from different threads, it

is recommended to instantiate a separate DRBG instance per thread. Using the <master> DRBG as entropy

source for multiple DRBG instances on different threads is thread-safe, because the DRBG instance will lock

the <master> DRBG automatically for obtaining random input.

THE OVERALL PICTURE
The following picture gives an overview over how the DRBG instances work together and are being used.

+−−−−−−−−−−−−−−−−−−−−+
| os entropy sources |
+−−−−−−−−−−−−−−−−−−−−+

|
v +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

RAND_add() ==> <master> <−| shared DRBG (with locking) |
/ \ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
/ \ +−−−−−−−−−−−−−−−−−−−−−−−−−−−+

<public> <private> <− | per−thread DRBG instances |
| | +−−−−−−−−−−−−−−−−−−−−−−−−−−−+
v v

RAND_bytes() RAND_priv_bytes()
| ˆ
| |

+−−−−−−−−−−−−−−−−−−+ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| general purpose | | used for secrets like session keys |
| random generator | | and private keys for certificates |
+−−−−−−−−−−−−−−−−−−+ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

The usual way to obtain random bytes is to call RAND_bytes(...) or RAND_priv_bytes(...). These calls are

roughly equivalent to calling RAND_DRBG_bytes(<public>, ...) and RAND_DRBG_bytes(<private>, ...),

respectively. The method RAND_DRBG_bytes (3) is a convenience method wrapping the

RAND_DRBG_generate (3) function, which serves the actual request for random data.

RESEEDING
A DRBG instance seeds itself automatically, pulling random input from its entropy source. The entropy

source can be either a trusted operating system entropy source, or another DRBG with access to such a

source.

Automatic reseeding occurs after a predefined number of generate requests. The selection of the trusted

entropy sources is configured at build time using the −−with−rand−seed option. The following sections

explain the reseeding process in more detail.

Automatic Reseeding

Before satisfying a generate request (RAND_DRBG_generate (3)), the DRBG reseeds itself automatically,

if one of the following conditions holds:

− the DRBG was not instantiated (=seeded) yet or has been uninstantiated.

− the number of generate requests since the last reseeding exceeds a certain threshold, the so called

reseed_interval. This behaviour can be disabled by setting the reseed_interval to 0.

− the time elapsed since the last reseeding exceeds a certain time interval, the so called

reseed_time_interval. This can be disabled by setting the reseed_time_interval to 0.

− the DRBG is in an error state.

Note: An error state is entered if the entropy source fails while the DRBG is seeding or reseeding. The last

1.1.1f 2023-02-06 2

RAND_DRBG(7SSL) OpenSSL RAND_DRBG(7SSL)

case ensures that the DRBG automatically recovers from the error as soon as the entropy source is available

again.

Manual Reseeding

In addition to automatic reseeding, the caller can request an immediate reseeding of the DRBG with fresh

entropy by setting the prediction resistance parameter to 1 when calling RAND_DRBG_generate (3).

The document [NIST SP 800−90C] describes prediction resistance requests in detail and imposes strict

conditions on the entropy sources that are approved for providing prediction resistance. Since the default

DRBG implementation does not have access to such an approved entropy source, a request for prediction

resistance will currently always fail. In other words, prediction resistance is currently not supported yet by

the DRBG.

For the three shared DRBGs (and only for these) there is another way to reseed them manually: If

RAND_add (3) is called with a positive randomness argument (or RAND_seed (3)), then this will

immediately reseed the <master> DRBG. The <public> and <private> DRBG will detect this on their next

generate call and reseed, pulling randomness from <master>.

The last feature has been added to support the common practice used with previous OpenSSL versions to

call RAND_add() before calling RAND_bytes().

Entropy Input vs. Additional Data

The DRBG distinguishes two different types of random input: entropy, which comes from a trusted source,

and additional input’, which can optionally be added by the user and is considered untrusted. It is possible

to add additional input not only during reseeding, but also for every generate request. This is in fact done

automatically by RAND_DRBG_bytes (3).

Configuring the Random Seed Source

In most cases OpenSSL will automatically choose a suitable seed source for automatically seeding and

reseeding its <master> DRBG. In some cases however, it will be necessary to explicitly specify a seed

source during configuration, using the −−with−rand−seed option. For more information, see the INSTALL

instructions. There are also operating systems where no seed source is available and automatic reseeding is

disabled by default.

The following two sections describe the reseeding process of the master DRBG, depending on whether

automatic reseeding is available or not.

Reseeding the master DRBG with automatic seeding enabled

Calling RAND_poll() or RAND_add() is not necessary, because the DRBG pulls the necessary entropy

from its source automatically. Howev er, both calls are permitted, and do reseed the RNG.

RAND_add() can be used to add both kinds of random input, depending on the value of the randomness

argument:

randomness == 0:

The random bytes are mixed as additional input into the current state of the DRBG. Mixing in

additional input is not considered a full reseeding, hence the reseed counter is not reset.

randomness > 0:

The random bytes are used as entropy input for a full reseeding (resp. reinstantiation) if the DRBG is

instantiated (resp. uninstantiated or in an error state). The number of random bits required for

reseeding is determined by the security strength of the DRBG. Currently it defaults to 256 bits (32

bytes). It is possible to provide less randomness than required. In this case the missing randomness

will be obtained by pulling random input from the trusted entropy sources.

Reseeding the master DRBG with automatic seeding disabled

Calling RAND_poll() will always fail.

RAND_add() needs to be called for initial seeding and periodic reseeding. At least 48 bytes (384 bits) of

randomness have to be provided, otherwise the (re−)seeding of the DRBG will fail. This corresponds to one

and a half times the security strength of the DRBG. The extra half is used for the nonce during instantiation.

More precisely, the number of bytes needed for seeding depend on the security strength of the DRBG,

1.1.1f 2023-02-06 3

RAND_DRBG(7SSL) OpenSSL RAND_DRBG(7SSL)

which is set to 256 by default.

SEE ALSO
RAND_DRBG_bytes (3), RAND_DRBG_generate (3), RAND_DRBG_reseed (3),

RAND_DRBG_get0_master (3), RAND_DRBG_get0_public (3), RAND_DRBG_get0_private (3),

RAND_DRBG_set_reseed_interval (3), RAND_DRBG_set_reseed_time_interval (3),

RAND_DRBG_set_reseed_defaults (3), RAND (7),

COPYRIGHT
Copyright 2017−2018 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with

the License. You can obtain a copy in the file LICENSE in the source distribution or at

<https://www.openssl.org/source/license.html>.

1.1.1f 2023-02-06 4

