
Sub::Quote(3pm) User Contributed Perl Documentation Sub::Quote(3pm)

NAME
Sub::Quote − Efficient generation of subroutines via string eval

SYNOPSIS
package Silly;

use Sub::Quote qw(quote_sub unquote_sub quoted_from_sub);

quote_sub 'Silly::kitty', q{ print "meow" };

quote_sub 'Silly::doggy', q{ print "woof" };

my $sound = 0;

quote_sub 'Silly::dagron',

q{ print ++$sound % 2 ? 'burninate' : 'roar' },

{ '$sound' => \$sound };

And elsewhere:

Silly−>kitty; # meow

Silly−>doggy; # woof

Silly−>dagron; # burninate

Silly−>dagron; # roar

Silly−>dagron; # burninate

DESCRIPTION
This package provides performant ways to generate subroutines from strings.

SUBROUTINES
quote_sub

my $coderef = quote_sub 'Foo::bar', q{ print $x++ . "\n" }, { '$x' => \0 };

Arguments: ?$name, $code, ?\%captures, ?\%options

$name is the subroutine where the coderef will be installed.

$code is a string that will be turned into code.

\%captures is a hashref of variables that will be made available to the code. The keys should be the full

name of the variable to be made available, including the sigil. The values should be references to the

values. The variables will contain copies of the values. See the ‘‘SYNOPSIS’’’s Silly::dagron for an

example using captures.

Exported by default.

options

no_install

Boolean. Set this option to not install the generated coderef into the passed subroutine name on undefer.

no_defer

Boolean. Prevents a Sub::Defer wrapper from being generated for the quoted sub. If the sub will most

likely be called at some point, setting this is a good idea. For a sub that will most likely be inlined, it is

not recommended.

package

The package that the quoted sub will be evaluated in. If not specified, the package from sub calling

quote_sub will be used.

hints

The value of $ˆH to use for the code being evaluated. This captures the settings of the strict pragma. If

not specified, the value from the calling code will be used.

perl v5.30.0 2019-10-13 1

Sub::Quote(3pm) User Contributed Perl Documentation Sub::Quote(3pm)

warning_bits

The value of ${ˆWARNING_BITS} to use for the code being evaluated. This captures the warnings

set. If not specified, the warnings from the calling code will be used.

%ˆH

The value of %ˆH to use for the code being evaluated. This captures additional pragma settings. If not

specified, the value from the calling code will be used if possible (on perl 5.10+).

attributes

The ‘‘Subroutine Attributes’’ in perlsub to apply to the sub generated. Should be specified as an array

reference. The attributes will be applied to both the generated sub and the deferred wrapper, if one is

used.

file

The apparent filename to use for the code being evaluated.

line

The apparent line number to use for the code being evaluated.

unquote_sub

my $coderef = unquote_sub $sub;

Forcibly replace subroutine with actual code.

If $sub is not a quoted sub, this is a no-op.

Exported by default.

quoted_from_sub

my $data = quoted_from_sub $sub;

my ($name, $code, $captures, $compiled_sub) = @$data;

Returns original arguments to quote_sub, plus the compiled version if this sub has already been unquoted.

Note that $sub can be either the original quoted version or the compiled version for convenience.

Exported by default.

inlinify

my $prelude = capture_unroll '$captures', {

'$x' => 1,

'$y' => 2,

}, 4;

my $inlined_code = inlinify q{

my ($x, $y) = @_;

print $x + $y . "\n";

}, '$x, $y', $prelude;

Takes a string of code, a string of arguments, a string of code which acts as a ‘‘prelude’’, and a Boolean

representing whether or not to localize the arguments.

quotify

my $quoted_value = quotify $value;

Quotes a single (non-reference) scalar value for use in a code string. The result should reproduce the

original value, including strings, undef, integers, and floating point numbers. The resulting floating point

numbers (including infinites and not a number) should be precisely equal to the original, if possible. The

exact format of the resulting number should not be relied on, as it may include hex floats or math

expressions.

perl v5.30.0 2019-10-13 2

Sub::Quote(3pm) User Contributed Perl Documentation Sub::Quote(3pm)

capture_unroll

my $prelude = capture_unroll '$captures', {

'$x' => 1,

'$y' => 2,

}, 4;

Arguments: $from, \%captures, $indent

Generates a snippet of code which is suitable to be used as a prelude for ‘‘inlinify’’. $from is a string will

be used as a hashref in the resulting code. The keys of %captures are the names of the variables and the

values are ignored. $indent is the number of spaces to indent the result by.

qsub

my $hash = {

coderef => qsub q{ print "hello"; },

other => 5,

};

Arguments: $code

Works exactly like ‘‘quote_sub’’, but includes a prototype to only accept a single parameter. This makes it

easier to include in hash structures or lists.

Exported by default.

sanitize_identifier

my $var_name = '$variable_for_' . sanitize_identifier('@name');

quote_sub qq{ print \$${var_name} }, { $var_name => \$value };

Arguments: $identifier

Sanitizes a value so that it can be used in an identifier.

ENVIRONMENT
SUB_QUOTE_DEBUG

Causes code to be output to STDERR before being evaled. Several forms are supported:

1 All subs will be output.

/foo/

Subs will be output if their code matches the given regular expression.

simple_identifier

Any sub with the given name will be output.

Full::identifier

A sub matching the full name will be output.

Package::Name::

Any sub in the given package (including anonymous subs) will be output.

CAVEATS
Much of this is just string-based code-generation, and as a result, a few cav eats apply.

return

Calling return from a quote_sub’ed sub will not likely do what you intend. Instead of returning from the

code you defined in quote_sub, it will return from the overall function it is composited into.

So when you pass in:

quote_sub q{ return 1 if $condition; $morecode }

It might turn up in the intended context as follows:

sub foo {

<important code a>

perl v5.30.0 2019-10-13 3

Sub::Quote(3pm) User Contributed Perl Documentation Sub::Quote(3pm)

do {

return 1 if $condition;

$morecode

};

<important code b>

}

Which will obviously return from foo, when all you meant to do was return from the code context in

quote_sub and proceed with running important code b.

pragmas

Sub::Quote preserves the environment of the code creating the quoted subs. This includes the package,

strict, warnings, and any other lexical pragmas. This is done by prefixing the code with a block that sets up

a matching environment. When inlining Sub::Quote subs, care should be taken that user pragmas won’t

effect the rest of the code.

SUPPORT
Users’ IRC: #moose on irc.perl.org

Development and contribution IRC: #web−simple on irc.perl.org

Bugtracker: <https://rt.cpan.org/Public/Dist/Display.html?Name=Sub−Quote>

Git repository: <git://github.com/moose/Sub−Quote.git>

Git browser: <https://github.com/moose/Sub−Quote>

AUTHOR
mst − Matt S. Trout (cpan:MSTROUT) <mst@shadowcat.co.uk>

CONTRIBUTORS
frew − Arthur Axel ‘‘fREW’’ Schmidt (cpan:FREW) <frioux@gmail.com>

ribasushi − Peter Rabbitson (cpan:RIBASUSHI) <ribasushi@cpan.org>

Mithaldu − Christian Walde (cpan:MITHALDU) <walde.christian@googlemail.com>

tobyink − Toby Inkster (cpan:TOBYINK) <tobyink@cpan.org>

haarg − Graham Knop (cpan:HAARG) <haarg@cpan.org>

bluefeet − Aran Deltac (cpan:BLUEFEET) <bluefeet@gmail.com>

ether − Karen Etheridge (cpan:ETHER) <ether@cpan.org>

dolmen − Olivier Mengué (cpan:DOLMEN) <dolmen@cpan.org>

alexbio − Alessandro Ghedini (cpan:ALEXBIO) <alexbio@cpan.org>

getty − Torsten Raudssus (cpan:GETTY) <torsten@raudss.us>

arcanez − Justin Hunter (cpan:ARCANEZ) <justin.d.hunter@gmail.com>

kanashiro − Lucas Kanashiro (cpan:KANASHIRO) <kanashiro.duarte@gmail.com>

djerius − Diab Jerius (cpan:DJERIUS) <djerius@cfa.harvard.edu>

COPYRIGHT
Copyright (c) 2010−2016 the Sub::Quote ‘‘AUTHOR’’ and ‘‘CONTRIBUTORS’’ as listed above.

LICENSE
This library is free software and may be distributed under the same terms as perl itself. See

<http://dev.perl.org/licenses/>.

perl v5.30.0 2019-10-13 4

