
LibXML(3pm) User Contributed Perl Documentation LibXML(3pm)

NAME
XML::LibXML − Perl Binding for libxml2

SYNOPSIS
use XML::LibXML;

my $dom = XML::LibXML−>load_xml(string => <<'EOT');

<some−xml/>

EOT

$Version_String = XML::LibXML::LIBXML_DOTTED_VERSION;

$Version_ID = XML::LibXML::LIBXML_VERSION;

$DLL_Version = XML::LibXML::LIBXML_RUNTIME_VERSION;

$libxmlnode = XML::LibXML−>import_GDOME($node, $deep);

$gdomenode = XML::LibXML−>export_GDOME($node, $deep);

DESCRIPTION
This module is an interface to libxml2, providing XML and HTML parsers with DOM, SAX and XMLReader

interfaces, a large subset of DOM Layer 3 interface and a XML::XPath−like interface to XPath API of

libxml2. The module is split into several packages which are not described in this section; unless stated

otherwise, you only need to use XML::LibXML; in your programs.

For further information, please check the following documentation:

XML::LibXML::Parser

Parsing XML files with XML::LibXML

XML::LibXML::DOM

XML::LibXML Document Object Model (DOM) Implementation

XML::LibXML::SAX

XML::LibXML direct SAX parser

XML::LibXML::Reader

Reading XML with a pull-parser

XML::LibXML::Dtd

XML::LibXML frontend for DTD validation

XML::LibXML::RelaxNG

XML::LibXML frontend for RelaxNG schema validation

XML::LibXML::Schema

XML::LibXML frontend for W3C Schema schema validation

XML::LibXML::XPathContext

API for evaluating XPath expressions with enhanced support for the evaluation context

XML::LibXML::InputCallback

Implementing custom URI Resolver and input callbacks

XML::LibXML::Common

Common functions for XML::LibXML related Classes

The nodes in the Document Object Model (DOM) are represented by the following classes (most of which

‘‘inherit’’ from XML::LibXML::Node):

XML::LibXML::Document

XML::LibXML class for DOM document nodes

XML::LibXML::Node

Abstract base class for XML::LibXML DOM nodes

XML::LibXML::Element

XML::LibXML class for DOM element nodes

perl v5.30.0 2019-10-18 1

LibXML(3pm) User Contributed Perl Documentation LibXML(3pm)

XML::LibXML::Text

XML::LibXML class for DOM text nodes

XML::LibXML::Comment

XML::LibXML class for comment DOM nodes

XML::LibXML::CDAT ASection

XML::LibXML class for DOM CDAT A sections

XML::LibXML::Attr

XML::LibXML DOM attribute class

XML::LibXML::DocumentFragment

XML::LibXML’s DOM L2 Document Fragment implementation

XML::LibXML::Namespace

XML::LibXML DOM namespace nodes

XML::LibXML::PI

XML::LibXML DOM processing instruction nodes

ENCODINGS SUPPORT IN XML::LIBXML
Recall that since version 5.6.1, Perl distinguishes between character strings (internally encoded in UTF−8)

and so called binary data and, accordingly, applies either character or byte semantics to them. A scalar

representing a character string is distinguished from a byte string by special flag (UTF8). Please refer to

perlunicode for details.

XML::LibXML’s API is designed to deal with many encodings of XML documents completely

transparently, so that the application using XML::LibXML can be completely ignorant about the encoding

of the XML documents it works with. On the other hand, functions like

XML::LibXML::Document−>setEncoding give the user control over the document encoding.

To ensure the aforementioned transparency and uniformity, most functions of XML::LibXML that work

with in-memory trees accept and return data as character strings (i.e. UTF−8 encoded with the UTF8 flag on)

regardless of the original document encoding; however, the functions related to I/O operations (i.e. parsing

and saving) operate with binary data (in the original document encoding) obeying the encoding declaration

of the XML documents.

Below we summarize basic rules and principles regarding encoding:

1. Do NOT apply any encoding-related PerlIO layers (:utf8 or :encoding(...)) to file handles

that are an input for the parses or an output for a serializer of (full) XML documents. This is because

the conversion of the data to/from the internal character representation is provided by libxml2 itself

which must be able to enforce the encoding specified by the <?xml version="1.0"

encoding="..."?> declaration. Here is an example to follow:

use XML::LibXML;

load

open my $fh, '<', 'file.xml';

binmode $fh; # drop all PerlIO layers possibly created by a use open pragma

$doc = XML::LibXML−>load_xml(IO => $fh);

save

open my $out, '>', 'out.xml';

binmode $out; # as above

$doc−>toFH($out);

or

print {$out} $doc−>toString();

2. All functions working with DOM accept and return character strings (UTF−8 encoded with UTF8 flag

on). E.g.

perl v5.30.0 2019-10-18 2

LibXML(3pm) User Contributed Perl Documentation LibXML(3pm)

my $doc = XML::LibXML::Document−>new('1.0',$some_encoding);

my $element = $doc−>createElement($name);

$element−>appendText($text);

$xml_fragment = $element−>toString(); # returns a character string

$xml_document = $doc−>toString(); # returns a byte string

where $some_encoding is the document encoding that will be used when saving the document,

and $name and $text contain character strings (UTF−8 encoded with UTF8 flag on). Note that the

method toString returns XML as a character string if applied to other node than the Document node

and a byte string containing the appropriate

<?xml version="1.0" encoding="..."?>

declaration if applied to a XML::LibXML::Document.

3. DOM methods also accept binary strings in the original encoding of the document to which the node

belongs (UTF−8 is assumed if the node is not attached to any document). Exploiting this feature is NOT

RECOMMENDED since it is considered bad practice.

my $doc = XML::LibXML::Document−>new('1.0','iso−8859−2');

my $text = $doc−>createTextNode($some_latin2_encoded_byte_string);

WORKS, BUT NOT RECOMMENDED!

NOTE: libxml2 support for many encodings is based on the iconv library. The actual list of supported

encodings may vary from platform to platform. To test if your platform works correctly with your language

encoding, build a simple document in the particular encoding and try to parse it with XML::LibXML to see

if the parser produces any errors. Occasional crashes were reported on rare platforms that ship with a

broken version of iconv.

THREAD SUPPORT
XML::LibXML since 1.67 partially supports Perl threads in Perl >= 5.8.8. XML::LibXML can be used

with threads in two ways:

By default, all XML::LibXML classes use CLONE_SKIP class method to prevent Perl from copying

XML::LibXML::* objects when a new thread is spawn. In this mode, all XML::LibXML::* objects are

thread specific. This is the safest way to work with XML::LibXML in threads.

Alternatively, one may use

use threads;

use XML::LibXML qw(:threads_shared);

to indicate, that all XML::LibXML node and parser objects should be shared between the main thread and

any thread spawn from there. For example, in

my $doc = XML::LibXML−>load_xml(location => $filename);

my $thr = threads−>new(sub{

code working with $doc

1;

});

$thr−>join;

the variable $doc refers to the exact same XML::LibXML::Document in the spawned thread as in the main

thread.

Without using mutex locks, parallel threads may read the same document (i.e. any node that belongs to the

document), parse files, and modify different documents.

However, if there is a chance that some of the threads will attempt to modify a document (or even create

new nodes based on that document, e.g. with $doc−>createElement) that other threads may be

reading at the same time, the user is responsible for creating a mutex lock and using it in both in the thread

that modifies and the thread that reads:

perl v5.30.0 2019-10-18 3

LibXML(3pm) User Contributed Perl Documentation LibXML(3pm)

my $doc = XML::LibXML−>load_xml(location => $filename);

my $mutex : shared;

my $thr = threads−>new(sub{

lock $mutex;

my $el = $doc−>createElement('foo');

...

1;

});

{

lock $mutex;

my $root = $doc−>documentElement;

say $root−>name;

}

$thr−>join;

Note that libxml2 uses dictionaries to store short strings and these dictionaries are kept on a document

node. Without mutex locks, it could happen in the previous example that the thread modifies the dictionary

while other threads attempt to read from it, which could easily lead to a crash.

VERSION INFORMATION
Sometimes it is useful to figure out, for which version XML::LibXML was compiled for. In most cases this

is for debugging or to check if a given installation meets all functionality for the package. The functions

XML::LibXML::LIBXML_DOTTED_VERSION and XML::LibXML::LIBXML_VERSION provide this

version information. Both functions simply pass through the values of the similar named macros of

libxml2. Similarly, XML::LibXML::LIBXML_RUNTIME_VERSION returns the version of the (usually

dynamically) linked libxml2.

XML::LibXML::LIBXML_DOTTED_VERSION

$Version_String = XML::LibXML::LIBXML_DOTTED_VERSION;

Returns the version string of the libxml2 version XML::LibXML was compiled for. This will be

‘‘2.6.2’’ for ‘‘libxml2 2.6.2’’.

XML::LibXML::LIBXML_VERSION

$Version_ID = XML::LibXML::LIBXML_VERSION;

Returns the version id of the libxml2 version XML::LibXML was compiled for. This will be ‘‘20602’’

for ‘‘libxml2 2.6.2’’. Don’t mix this version id with $XML::LibXML::VERSION. The latter

contains the version of XML::LibXML itself while the first contains the version of libxml2

XML::LibXML was compiled for.

XML::LibXML::LIBXML_RUNTIME_VERSION

$DLL_Version = XML::LibXML::LIBXML_RUNTIME_VERSION;

Returns a version string of the libxml2 which is (usually dynamically) linked by XML::LibXML. This

will be ‘‘20602’’ for libxml2 released as ‘‘2.6.2’’ and something like ‘‘20602−CVS2032’’ for a CVS

build of libxml2.

XML::LibXML issues a warning if the version of libxml2 dynamically linked to it is less than the

version of libxml2 which it was compiled against.

EXPORTS
By default the module exports all constants and functions listed in the :all tag, described below.

EXPORT TAGS
:all

Includes the tags :libxml, :encoding, and :ns described below.

:libxml

Exports integer constants for DOM node types.

perl v5.30.0 2019-10-18 4

LibXML(3pm) User Contributed Perl Documentation LibXML(3pm)

XML_ELEMENT_NODE => 1

XML_ATTRIBUTE_NODE => 2

XML_TEXT_NODE => 3

XML_CDATA_SECTION_NODE => 4

XML_ENTITY_REF_NODE => 5

XML_ENTITY_NODE => 6

XML_PI_NODE => 7

XML_COMMENT_NODE => 8

XML_DOCUMENT_NODE => 9

XML_DOCUMENT_TYPE_NODE => 10

XML_DOCUMENT_FRAG_NODE => 11

XML_NOTATION_NODE => 12

XML_HTML_DOCUMENT_NODE => 13

XML_DTD_NODE => 14

XML_ELEMENT_DECL => 15

XML_ATTRIBUTE_DECL => 16

XML_ENTITY_DECL => 17

XML_NAMESPACE_DECL => 18

XML_XINCLUDE_START => 19

XML_XINCLUDE_END => 20

:encoding

Exports two encoding conversion functions from XML::LibXML::Common.

encodeToUTF8()

decodeFromUTF8()

:ns

Exports two convenience constants: the implicit namespace of the reserved xml: prefix, and the

implicit namespace for the reserved xmlns: prefix.

XML_XML_NS => 'http://www.w3.org/XML/1998/namespace'

XML_XMLNS_NS => 'http://www.w3.org/2000/xmlns/'

RELATED MODULES
The modules described in this section are not part of the XML::LibXML package itself. As they support

some additional features, they are mentioned here.

XML::LibXSLT

XSLT 1.0 Processor using libxslt and XML::LibXML

XML::LibXML::Iterator

XML::LibXML Implementation of the DOM Trav ersal Specification

XML::CompactTree::XS

Uses XML::LibXML::Reader to very efficiently to parse XML document or element into native Perl

data structures, which are less flexible but significantly faster to process then DOM.

XML::LIBXML AND XML::GDOME
Note: THE FUNCTIONS DESCRIBED HERE ARE STILL EXPERIMENTAL

Although both modules make use of libxml2’s XML capabilities, the DOM implementation of both modules

are not compatible. But still it is possible to exchange nodes from one DOM to the other. The concept of this

exchange is pretty similar to the function cloneNode(): The particular node is copied on the low-level to the

opposite DOM implementation.

Since the DOM implementations cannot coexist within one document, one is forced to copy each node that

should be used. Because you are always keeping two nodes this may cause quite an impact on a machines

memory usage.

XML::LibXML provides two functions to export or import GDOME nodes: import_GDOME() and

perl v5.30.0 2019-10-18 5

LibXML(3pm) User Contributed Perl Documentation LibXML(3pm)

export_GDOME(). Both function have two parameters: the node and a flag for recursive import. The flag

works as in cloneNode().

The two functions allow one to export and import XML::GDOME nodes explicitly, howev er, XML::LibXML

also allows the transparent import of XML::GDOME nodes in functions such as appendChild(),

insertAfter() and so on. While native nodes are automatically adopted in most functions XML::GDOME

nodes are always cloned in advance. Thus if the original node is modified after the operation, the node in

the XML::LibXML document will not have this information.

import_GDOME

$libxmlnode = XML::LibXML−>import_GDOME($node, $deep);

This clones an XML::GDOME node to an XML::LibXML node explicitly.

export_GDOME

$gdomenode = XML::LibXML−>export_GDOME($node, $deep);

Allows one to clone an XML::LibXML node into an XML::GDOME node.

CONTACTS
For bug reports, please use the CPAN request tracker on

http://rt.cpan.org/NoAuth/Bugs.html?Dist=XML−LibXML

For suggestions etc., and other issues related to XML::LibXML you may use the perl XML mailing list

(perl−xml@listserv.ActiveState.com), where most XML-related Perl modules are discussed.

In case of problems you should check the archives of that list first. Many problems are already discussed

there. You can find the list’s archives and subscription options at

<http://aspn.activestate.com/ASPN/Mail/Browse/Threaded/perl−xml>.

AUTHORS
Matt Sergeant, Christian Glahn, Petr Pajas

VERSION
2.0134

COPYRIGHT
2001−2007, AxKit.com Ltd.

2002−2006, Christian Glahn.

2006−2009, Petr Pajas.

LICENSE
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

perl v5.30.0 2019-10-18 6

