
ADD_KEY(2) Linux Ke y Management Calls ADD_KEY(2)

NAME
add_key − add a key to the kernel’s key management facility

SYNOPSIS
#include <sys/types.h>

#include <keyutils.h>

key_serial_t add_key(const char *type, const char *description,

const void *payload , size_t plen,

key_serial_t keyring);

No glibc wrapper is provided for this system call; see NOTES.

DESCRIPTION
add_key() creates or updates a key of the given type and description, instantiates it with the payload of

length plen, attaches it to the nominated keyring, and returns the key’s serial number.

The key may be rejected if the provided data is in the wrong format or it is invalid in some other way.

If the destination keyring already contains a key that matches the specified type and description, then, if the

key type supports it, that key will be updated rather than a new key being created; if not, a new key (with a

different ID) will be created and it will displace the link to the extant key from the keyring.

The destination keyring serial number may be that of a valid keyring for which the caller has write permis-

sion. Alternatively, it may be one of the following special keyring IDs:

KEY_SPEC_THREAD_KEYRING

This specifies the caller’s thread-specific keyring (thread-keyring(7)).

KEY_SPEC_PROCESS_KEYRING

This specifies the caller’s process-specific keyring (process-keyring(7)).

KEY_SPEC_SESSION_KEYRING

This specifies the caller’s session-specific keyring (session-keyring(7)).

KEY_SPEC_USER_KEYRING

This specifies the caller’s UID-specific keyring (user-keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING

This specifies the caller’s UID-session keyring (user-session-keyring(7)).

Key types

The key type is a string that specifies the key’s type. Internally, the kernel defines a number of key types

that are available in the core key management code. Among the types that are available for user-space use

and can be specified as the type argument to add_key() are the following:

"keyring"

Ke yrings are special key types that may contain links to sequences of other keys of any type. If

this interface is used to create a keyring, then payload should be NULL and plen should be zero.

"user" This is a general purpose key type whose payload may be read and updated by user-space applica-

tions. The key is kept entirely within kernel memory. The payload for keys of this type is a blob

of arbitrary data of up to 32,767 bytes.

"logon" (since Linux 3.3)

This key type is essentially the same as "user", but it does not permit the key to read. This is suit-

able for storing payloads that you do not want to be readable from user space.

This key type vets the description to ensure that it is qualified by a "service" prefix, by checking to ensure

that the description contains a ’:’ that is preceded by other characters.

"big_key" (since Linux 3.13)

This key type is similar to "user", but may hold a payload of up to 1 MiB. If the key payload is

large enough, then it may be stored encrypted in tmpfs (which can be swapped out) rather than

kernel memory.

Linux 2019-03-06 1



ADD_KEY(2) Linux Ke y Management Calls ADD_KEY(2)

For further details on these key types, see keyrings(7).

RETURN VALUE
On success, add_key() returns the serial number of the key it created or updated. On error, −1 is returned

and errno is set to indicate the cause of the error.

ERRORS
EACCES

The keyring wasn’t available for modification by the user.

EDQUOT

The key quota for this user would be exceeded by creating this key or linking it to the keyring.

EFAULT

One or more of type, description, and payload points outside process’s accessible address space.

EINVAL

The size of the string (including the terminating null byte) specified in type or description ex-

ceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL

The payload data was invalid.

EINVAL

type was "logon" and the description was not qualified with a prefix string of the form "service:".

EKEYEXPIRED

The keyring has expired.

EKEYREVOKED

The keyring has been revoked.

ENOKEY

The keyring doesn’t exist.

ENOMEM

Insufficient memory to create a key.

EPERM

The type started with a period ('.'). Ke y types that begin with a period are reserved to the imple-

mentation.

EPERM

type was "keyring" and the description started with a period ('.'). Ke yrings with descriptions

(names) that begin with a period are reserved to the implementation.

VERSIONS
This system call first appeared in Linux 2.6.10.

CONFORMING TO
This system call is a nonstandard Linux extension.

NOTES
No wrapper for this system call is provided in glibc. A wrapper is provided in the libkeyutils package.

When employing the wrapper in that library, link with −lkeyutils.

EXAMPLE
The program below creates a key with the type, description, and payload specified in its command-line ar-

guments, and links that key into the session keyring. The following shell session demonstrates the use of

the program:

$ ./a.out user mykey "Some payload"

Key ID is 64a4dca

$ grep '64a4dca' /proc/keys

064a4dca I--Q--- 1 perm 3f010000 1000 1000 user mykey: 12

Linux 2019-03-06 2



ADD_KEY(2) Linux Ke y Management Calls ADD_KEY(2)

Program source

#include <sys/types.h>

#include <keyutils.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int

main(int argc, char *argv[])

{

key_serial_t key;

if (argc != 4) {

fprintf(stderr, "Usage: %s type description payload\n",

argv[0]);

exit(EXIT_FAILURE);

}

key = add_key(argv[1], argv[2], argv[3], strlen(argv[3]),

KEY_SPEC_SESSION_KEYRING);

if (key == −1) {

perror("add_key");

exit(EXIT_FAILURE);

}

printf("Key ID is %lx\n", (long) key);

exit(EXIT_SUCCESS);

}

SEE ALSO
keyctl(1), keyctl(2), request_key(2), keyctl(3), keyrings(7), keyutils(7), persistent−keyring(7),

process−keyring(7), session−keyring(7), thread−keyring(7), user−keyring(7), user−session−keyring(7)

The kernel source files Documentation/security/keys/core.rst and Documentation/keys/request−key.rst (or,

before Linux 4.13, in the files Documentation/security/keys.txt and

Documentation/security/keys−request−key.txt).

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 3


