be(1)

NAME

General Commands Manual bc(1)

bc - An arbitrary precision calculator language

SYNTAX

be [-hlwsqyv] [long-options] [file ...]

DESCRIPTION

be is a language that supports arbitrary precision numbers with interactive execution of statements. There
are some similarities in the syntax to the C programming language. A standard math library is available by
command line option. If requested, the math library is defined before processing any files. bec starts by
processing code from all the files listed on the command line in the order listed. After all files have been
processed, be reads from the standard input. All code is executed as it is read. (If a file contains a com-
mand to halt the processor, be will never read from the standard input.)

This version of be contains several extensions beyond traditional be implementations and the POSIX draft
standard. Command line options can cause these extensions to print a warning or to be rejected. This doc-
ument describes the language accepted by this processor. Extensions will be identified as such.

OPTIONS

-h, --help
Print the usage and exit.

-1, --Interactive
Force interactive mode.

-1, --mathlib
Define the standard math library.
-W, --warn

Give warnings for extensions to POSIX be.

-s, --standard

Process exactly the POSIX be language.
-q, --quiet

Do not print the normal GNU bc welcome.

-V, --version
Print the version number and copyright and quit.

NUMBERS

The most basic element in bc is the number. Numbers are arbitrary precision numbers. This precision is
both in the integer part and the fractional part. All numbers are represented internally in decimal and all
computation is done in decimal. (This version truncates results from divide and multiply operations.)
There are two attributes of numbers, the length and the scale. The length is the total number of decimal
digits used by be to represent a number and the scale is the total number of decimal digits after the decimal
point. For example:

.000001 has a length of 6 and scale of 6.

1935.000 has a length of 7 and a scale of 3.

VARIABLES

Numbers are stored in two types of variables, simple variables and arrays. Both simple variables and array
variables are named. Names begin with a letter followed by any number of letters, digits and underscores.
All letters must be lower case. (Full alpha-numeric names are an extension. In POSIX be all names are a
single lower case letter.) The type of variable is clear by the context because all array variable names will
be followed by brackets ([]).

There are four special variables, scale, ibase, obase, and last. scale defines how some operations use digits
after the decimal point. The default value of scale is 0. ibase and obase define the conversion base for in-
put and output numbers. The default for both input and output is base 10. last (an extension) is a variable
that has the value of the last printed number. These will be discussed in further detail where appropriate.
All of these variables may have values assigned to them as well as used in expressions.

GNU Project 2006-06-11 1

bc(1) General Commands Manual be(1)

COMMENTS
Comments in be start with the characters /* and end with the characters */. Comments may start anywhere
and appear as a single space in the input. (This causes comments to delimit other input items. For exam-
ple, a comment can not be found in the middle of a variable name.) Comments include any newlines (end
of line) between the start and the end of the comment.

To support the use of scripts for be, a single line comment has been added as an extension. A single line
comment starts at a # character and continues to the next end of the line. The end of line character is not
part of the comment and is processed normally.

EXPRESSIONS
The numbers are manipulated by expressions and statements. Since the language was designed to be inter-
active, statements and expressions are executed as soon as possible. There is no "main" program. Instead,
code is executed as it is encountered. (Functions, discussed in detail later, are defined when encountered.)

A simple expression is just a constant. be converts constants into internal decimal numbers using the cur-
rent input base, specified by the variable ibase. (There is an exception in functions.) The legal values of
ibase are 2 through 36. (Bases greater than 16 are an extension.) Assigning a value outside this range to
ibase will result in a value of 2 or 36. Input numbers may contain the characters 0-9 and A-Z. (Note: They
must be capitals. Lower case letters are variable names.) Single digit numbers always have the value of the
digit regardless of the value of ibase. (i.e. A = 10.) For multi-digit numbers, be changes all input digits
greater or equal to ibase to the value of ibase-1. This makes the number ZZZ always be the largest 3 digit
number of the input base.

Full expressions are similar to many other high level languages. Since there is only one kind of number,
there are no rules for mixing types. Instead, there are rules on the scale of expressions. Every expression
has a scale. This is derived from the scale of original numbers, the operation performed and in many cases,
the value of the variable scale. Legal values of the variable scale are 0 to the maximum number repre-
sentable by a C integer.

In the following descriptions of legal expressions, "expr" refers to a complete expression and "var" refers to
a simple or an array variable. A simple variable is just a
name
and an array variable is specified as
namelexpr]
Unless specifically mentioned the scale of the result is the maximum scale of the expressions involved.

-expr The result is the negation of the expression.
++ var The variable is incremented by one and the new value is the result of the expression.

--var The variable is decremented by one and the new value is the result of the expression.

var ++
The result of the expression is the value of the variable and then the variable is incremented by
one.

var -- The result of the expression is the value of the variable and then the variable is decremented by
one.

expr + expr
The result of the expression is the sum of the two expressions.

expr - expr
The result of the expression is the difference of the two expressions.

expr * expr
The result of the expression is the product of the two expressions.

expr / expr

The result of the expression is the quotient of the two expressions. The scale of the result is the
value of the variable scale.

GNU Project 2006-06-11 2

be(1)

General Commands Manual bc(1)

expr % expr
The result of the expression is the "remainder" and it is computed in the following way. To com-
pute a%b, first a/b is computed to scale digits. That result is used to compute a-(a/b)*b to the
scale of the maximum of scale+scale(b) and scale(a). If scale is set to zero and both expressions
are integers this expression is the integer remainder function.

expr " expr

The result of the expression is the value of the first raised to the second. The second expression
must be an integer. (If the second expression is not an integer, a warning is generated and the ex-
pression is truncated to get an integer value.) The scale of the result is scale if the exponent is
negative. If the exponent is positive the scale of the result is the minimum of the scale of the first
expression times the value of the exponent and the maximum of scale and the scale of the first ex-
pression. (e.g. scale(a"b) = min(scale(a)*b, max(scale, scale(a))).) It should be noted that expr™0
will always return the value of 1.

(expr) This alters the standard precedence to force the evaluation of the expression.

var = expr
The variable is assigned the value of the expression.

var <op>= expr
This is equivalent to "var = var <op> expr" with the exception that the "var" part is evaluated only
once. This can make a difference if "var" is an array.

Relational expressions are a special kind of expression that always evaluate to O or 1, O if the relation is
false and 1 if the relation is true. These may appear in any legal expression. (POSIX bc requires that rela-
tional expressions are used only in if, while, and for statements and that only one relational test may be
done in them.) The relational operators are

exprl < expr2
The result is 1 if expr1 is strictly less than expr2.

exprl <= expr2
The result is 1 if expr1 is less than or equal to expr2.

exprl > expr2
The result is 1 if exprl1 is strictly greater than expr2.

exprl >= expr2
The result is 1 if exprl is greater than or equal to expr2.

exprl == expr2
The result is 1 if expr1 is equal to expr2.

exprl !=expr2
The result is 1 if exprl is not equal to expr2.

Boolean operations are also legal. (POSIX be does NOT have boolean operations). The result of all
boolean operations are 0 and 1 (for false and true) as in relational expressions. The boolean operators are:

lexpr The resultis 1 if expris 0.

expr && expr
The result is 1 if both expressions are non-zero.

expr || expr
The result is 1 if either expression is non-zero.

The expression precedence is as follows: (lowest to highest)
|| operator, left associative
&& operator, left associative
| operator, nonassociative
Relational operators, left associative
Assignment operator, right associative

GNU Project 2006-06-11 3

bc(1) General Commands Manual be(1)

+ and - operators, left associative

* [and % operators, left associative
" operator, right associative

unary - operator, nonassociative

++ and -- operators, nonassociative

This precedence was chosen so that POSIX compliant be programs will run correctly. This will cause the
use of the relational and logical operators to have some unusual behavior when used with assignment ex-
pressions. Consider the expression:

a=3<5

Most C programmers would assume this would assign the result of "3 < 5" (the value 1) to the variable "a".
What this does in bc is assign the value 3 to the variable "a" and then compare 3 to 5. It is best to use
parenthesis when using relational and logical operators with the assignment operators.

There are a few more special expressions that are provided in be. These have to do with user defined func-
tions and standard functions. They all appear as "name(parameters)". See the section on functions for
user defined functions. The standard functions are:

length (expression)
The value of the length function is the number of significant digits in the expression.

read () The read function (an extension) will read a number from the standard input, regardless of where
the function occurs. Beware, this can cause problems with the mixing of data and program in the
standard input. The best use for this function is in a previously written program that needs input
from the user, but never allows program code to be input from the user. The value of the read
function is the number read from the standard input using the current value of the variable ibase
for the conversion base.

scale (expression)
The value of the scale function is the number of digits after the decimal point in the expression.

sqrt (expression)
The value of the sqrt function is the square root of the expression. If the expression is negative, a
run time error is generated.

STATEMENTS

Statements (as in most algebraic languages) provide the sequencing of expression evaluation. In bc state-
ments are executed "as soon as possible." Execution happens when a newline in encountered and there is
one or more complete statements. Due to this immediate execution, newlines are very important in be. In
fact, both a semicolon and a newline are used as statement separators. An improperly placed newline will
cause a syntax error. Because newlines are statement separators, it is possible to hide a newline by using
the backslash character. The sequence "\<nl>", where <nl> is the newline appears to bc as whitespace in-
stead of a newline. A statement list is a series of statements separated by semicolons and newlines. The
following is a list of be statements and what they do: (Things enclosed in brackets ([]) are optional parts of
the statement.)

expression
This statement does one of two things. If the expression starts with "<variable> <assignment> ...",
it is considered to be an assignment statement. If the expression is not an assignment statement,
the expression is evaluated and printed to the output. After the number is printed, a newline is
printed. For example, "a=1" is an assignment statement and "(a=1)" is an expression that has an
embedded assignment. All numbers that are printed are printed in the base specified by the vari-
able obase. The legal values for obase are 2 through BC_BASE_MAX. (See the section LIM-
ITS.) For bases 2 through 16, the usual method of writing numbers is used. For bases greater than
16, be uses a multi-character digit method of printing the numbers where each higher base digit is
printed as a base 10 number. The multi-character digits are separated by spaces. Each digit con-
tains the number of characters required to represent the base ten value of "obase-1". Since num-
bers are of arbitrary precision, some numbers may not be printable on a single output line. These
long numbers will be split across lines using the "\" as the last character on a line. The maximum

GNU Project 2006-06-11 4

be(1)

string

General Commands Manual bc(1)

number of characters printed per line is 70. Due to the interactive nature of be, printing a number
causes the side effect of assigning the printed value to the special variable last. This allows the
user to recover the last value printed without having to retype the expression that printed the num-
ber. Assigning to last is legal and will overwrite the last printed value with the assigned value.
The newly assigned value will remain until the next number is printed or another value is assigned
to last. (Some installations may allow the use of a single period (.) which is not part of a number
as a short hand notation for for last.)

The string is printed to the output. Strings start with a double quote character and contain all char-
acters until the next double quote character. All characters are take literally, including any new-
line. No newline character is printed after the string.

print list

The print statement (an extension) provides another method of output. The "list" is a list of strings
and expressions separated by commas. Each string or expression is printed in the order of the list.
No terminating newline is printed. Expressions are evaluated and their value is printed and as-
signed to the variable last. Strings in the print statement are printed to the output and may contain
special characters. Special characters start with the backslash character (\). The special characters
recognized by bec are "a" (alert or bell), "b" (backspace), "f" (form feed), "n" (newline), "r" (car-
riage return), "q" (double quote), "t" (tab), and "\" (backslash). Any other character following the
backslash will be ignored.

{ statement_list }

This is the compound statement. It allows multiple statements to be grouped together for execu-
tion.

if (expression) statement] [else statement2]

The if statement evaluates the expression and executes statementl or statement2 depending on the
value of the expression. If the expression is non-zero, statementl is executed. If statement2 is
present and the value of the expression is 0, then statement? is executed. (The else clause is an ex-
tension.)

while (expression) statement

The while statement will execute the statement while the expression is non-zero. It evaluates the
expression before each execution of the statement. Termination of the loop is caused by a zero
expression value or the execution of a break statement.

for ([expressionl] ; [expression2] ; [expression3]) statement

The for statement controls repeated execution of the statement. Expressionl is evaluated before
the loop. Expression2 is evaluated before each execution of the statement. If it is non-zero, the
statement is evaluated. If it is zero, the loop is terminated. After each execution of the statement,
expression3 is evaluated before the reevaluation of expression2. If expressionl or expression3 are
missing, nothing is evaluated at the point they would be evaluated. If expression2 is missing, it is
the same as substituting the value 1 for expression2. (The optional expressions are an extension.
POSIX bc requires all three expressions.) The following is equivalent code for the for statement:
expressionl;
while (expression2) {

statement;

expression3;

}

break This statement causes a forced exit of the most recent enclosing while statement or for statement.

continue

halt

GNU Project

The continue statement (an extension) causes the most recent enclosing for statement to start the
next iteration.

The halt statement (an extension) is an executed statement that causes the bec processor to quit only
when it is executed. For example, "if (O == 1) halt" will not cause bc to terminate because the halt
is not executed.

2006-06-11 5

bc(1) General Commands Manual be(1)

return Return the value O from a function. (See the section on functions.)

return (expression)
Return the value of the expression from a function. (See the section on functions.) As an exten-
sion, the parenthesis are not required.

PSEUDO STATEMENTS
These statements are not statements in the traditional sense. They are not executed statements. Their func-
tion is performed at "compile" time.

limits Print the local limits enforced by the local version of be. This is an extension.

quit When the quit statement is read, the bc processor is terminated, regardless of where the quit state-
ment is found. For example, "if (0 == 1) quit" will cause bc to terminate.

warranty
Print a longer warranty notice. This is an extension.

FUNCTIONS
Functions provide a method of defining a computation that can be executed later. Functions in be always
compute a value and return it to the caller. Function definitions are "dynamic" in the sense that a function
is undefined until a definition is encountered in the input. That definition is then used until another defini-
tion function for the same name is encountered. The new definition then replaces the older definition. A
function is defined as follows:
define name (parameters) { newline
auto_list statement_list }
A function call is just an expression of the form "name(parameters)".

Parameters are numbers or arrays (an extension). In the function definition, zero or more parameters are
defined by listing their names separated by commas. All parameters are call by value parameters. Arrays
are specified in the parameter definition by the notation "name[]". In the function call, actual parameters
are full expressions for number parameters. The same notation is used for passing arrays as for defining ar-
ray parameters. The named array is passed by value to the function. Since function definitions are dy-
namic, parameter numbers and types are checked when a function is called. Any mismatch in number or
types of parameters will cause a runtime error. A runtime error will also occur for the call to an undefined
function.

The auto_list is an optional list of variables that are for "local" use. The syntax of the auto list (if present)
is "auto name, ... ;". (The semicolon is optional.) Each name is the name of an auto variable. Arrays may
be specified by using the same notation as used in parameters. These variables have their values pushed
onto a stack at the start of the function. The variables are then initialized to zero and used throughout the
execution of the function. At function exit, these variables are popped so that the original value (at the time
of the function call) of these variables are restored. The parameters are really auto variables that are initial-
ized to a value provided in the function call. Auto variables are different than traditional local variables be-
cause if function A calls function B, B may access function A’s auto variables by just using the same name,
unless function B has called them auto variables. Due to the fact that auto variables and parameters are
pushed onto a stack, be supports recursive functions.

The function body is a list of be statements. Again, statements are separated by semicolons or newlines.
Return statements cause the termination of a function and the return of a value. There are two versions of
the return statement. The first form, "return", returns the value O to the calling expression. The second
form, "return (expression)", computes the value of the expression and returns that value to the calling ex-
pression. There is an implied "return (0)" at the end of every function. This allows a function to terminate
and return 0 without an explicit return statement.

Functions also change the usage of the variable ibase. All constants in the function body will be converted
using the value of ibase at the time of the function call. Changes of ibase will be ignored during the execu-
tion of the function except for the standard function read, which will always use the current value of ibase
for conversion of numbers.

Several extensions have been added to functions. First, the format of the definition has been slightly

GNU Project 2006-06-11 6

be(1)

General Commands Manual bc(1)

relaxed. The standard requires the opening brace be on the same line as the define keyword and all other
parts must be on following lines. This version of be will allow any number of newlines before and after the
opening brace of the function. For example, the following definitions are legal.
define d (n) { return (2*n); }
define d (n)
{ return (2*n); }

Functions may be defined as void. A void function returns no value and thus may not be used in any place
that needs a value. A void function does not produce any output when called by itself on an input line. The
key word void is placed between the key word define and the function name. For example, consider the
following session.

define py (y) { print "—--->", y, "<-—=", "\n"; }

define void px (x) { print "--->", x, "<-—=", "\n"; }

py (1)

———>1<——-

0

px (1)

———>1<——-
Since py is not a void function, the call of py(1) prints the desired output and then prints a second line that
is the value of the function. Since the value of a function that is not given an explicit return statement is
zero, the zero is printed. For px(1), no zero is printed because the function is a void function.

Also, call by variable for arrays was added. To declare a call by variable array, the declaration of the array
parameter in the function definition looks like "*name[]". The call to the function remains the same as call
by value arrays.

MATH LIBRARY

If be is invoked with the -1 option, a math library is preloaded and the default scale is set to 20. The math
functions will calculate their results to the scale set at the time of their call. The math library defines the
following functions:

s (x) The sine of x, x is in radians.

c(x) The cosine of x, x is in radians.

a(x) The arctangent of x, arctangent returns radians.
1(x) The natural logarithm of x.

e (x) The exponential function of raising e to the value x.

j (m,x) The Bessel function of integer order n of x.

EXAMPLES

In /bin/sh, the following will assign the value of "pi" to the shell variable pi.
pi=$ (echo "scale=10; 4*a(l)" | bc -1)

The following is the definition of the exponential function used in the math library. This function is written
in POSIX be.
scale = 20

/* Uses the fact that e"x = (e (x/2)) "2
When x is small enough, we use the series:
e"x =1+ x + x°2/2! + x°3/3! +
*/

define e(x) {
auto a, d, e, £, i, m, v, z

/* Check the sign of x. */
if (x<0) {

GNU Project 2006-06-11 7

be(1)

General Commands Manual

/* Precondition x. */

7z =

scale;

scale = 4 + z + .44*x;
while (x > 1) {

f
b4

+= 1;
/= 2;

/* Initialize the variables. */

v = 1+x
a = x
d=1
for (i=2; 1; i++) {
e = (a *= x) / (d *= 1)
if (e == 0) {
if (£>0) while (f--) v = V*vV;
scale = z

if (m) return (1/v);
return (v/1);

be(1)

The following is code that uses the extended features of be to implement a simple program for calculating
checkbook balances. This program is best kept in a file so that it can be used many times without having to
retype it at every use.

scale=2
print "\nCheck book program!\n"
print " Remember, deposits are negative transactions.\n"
print " Exit by a 0 transaction.\n\n"
print "Initial balance? "; bal = read()
bal /=1
print "\n"
while (1) {
"current balance = "; bal
"transaction? "; trans = read()
if (trans == 0) break;
bal -= trans
bal /=1
}
quit

The following is the definition of the recursive factorial function.
define £ (x) {

if

(x <= 1) return (1);

return (f(x-1) * x);

GNU Project

2006-06-11

bc(1) General Commands Manual be(1)

READLINE AND LIBEDIT OPTIONS

GNU bc can be compiled (via a configure option) to use the GNU readline input editor library or the BSD
libedit library. This allows the user to do editing of lines before sending them to be. It also allows for a
history of previous lines typed. When this option is selected, be has one more special variable. This spe-
cial variable, history is the number of lines of history retained. For readline, a value of —1 means that an
unlimited number of history lines are retained. Setting the value of history to a positive number restricts
the number of history lines to the number given. The value of 0 disables the history feature. The default
value is 100. For more information, read the user manuals for the GNU readline, history and BSD libedit
libraries. One can not enable both readline and libedit at the same time.

DIFFERENCES
This version of be was implemented from the POSIX P1003.2/D11 draft and contains several differences
and extensions relative to the draft and traditional implementations. It is not implemented in the traditional
way using dc(1). This version is a single process which parses and runs a byte code translation of the pro-
gram. There is an "undocumented" option (—c) that causes the program to output the byte code to the stan-
dard output instead of running it. It was mainly used for debugging the parser and preparing the math li-
brary.

A major source of differences is extensions, where a feature is extended to add more functionality and addi-
tions, where new features are added. The following is the list of differences and extensions.

LANG environment
This version does not conform to the POSIX standard in the processing of the LANG environment
variable and all environment variables starting with LC_.

names Traditional and POSIX bc have single letter names for functions, variables and arrays. They have
been extended to be multi-character names that start with a letter and may contain letters, numbers
and the underscore character.

Strings Strings are not allowed to contain NUL characters. POSIX says all characters must be included in

strings.

last POSIX bc does not have a last variable. Some implementations of bc use the period (.) in a simi-
lar way.

comparisons

POSIX bc allows comparisons only in the if statement, the while statement, and the second ex-
pression of the for statement. Also, only one relational operation is allowed in each of those state-
ments.

if statement, else clause
POSIX bc does not have an else clause.

for statement
POSIX bc requires all expressions to be present in the for statement.

&&, |, !
POSIX bc does not have the logical operators.

read function
POSIX bc does not have a read function.

print statement
POSIX bc does not have a print statement.

continue statement
POSIX bc does not have a continue statement.

return statement
POSIX bc requires parentheses around the return expression.

GNU Project 2006-06-11 9

bc(1) General Commands Manual be(1)

array parameters
POSIX be does not (currently) support array parameters in full. The POSIX grammar allows for
arrays in function definitions, but does not provide a method to specify an array as an actual para-
meter. (This is most likely an oversight in the grammar.) Traditional implementations of bc have
only call by value array parameters.

function format
POSIX be requires the opening brace on the same line as the define key word and the auto state-
ment on the next line.

=+, =—, =%, =/, =%, ="
POSIX bc does not require these "old style"” assignment operators to be defined. This version may
allow these "old style" assignments. Use the limits statement to see if the installed version sup-
ports them. If it does support the "old style" assignment operators, the statement "a =— 1" will
decrement a by 1 instead of setting a to the value —1.

spaces in numbers
Other implementations of bec allow spaces in numbers. For example, "x=1 3" would assign the
value 13 to the variable x. The same statement would cause a syntax error in this version of be.

errors and execution
This implementation varies from other implementations in terms of what code will be executed
when syntax and other errors are found in the program. If a syntax error is found in a function de-
finition, error recovery tries to find the beginning of a statement and continue to parse the function.
Once a syntax error is found in the function, the function will not be callable and becomes unde-
fined. Syntax errors in the interactive execution code will invalidate the current execution block.
The execution block is terminated by an end of line that appears after a complete sequence of
statements. For example,
a=1
b=2
has two execution blocks and
{a=1
b=2}
has one execution block. Any runtime error will terminate the execution of the current execution block. A
runtime warning will not terminate the current execution block.

Interrupts

During an interactive session, the SIGINT signal (usually generated by the control-C character
from the terminal) will cause execution of the current execution block to be interrupted. It will
display a "runtime" error indicating which function was interrupted. After all runtime structures
have been cleaned up, a message will be printed to notify the user that be is ready for more input.
All previously defined functions remain defined and the value of all non-auto variables are the
value at the point of interruption. All auto variables and function parameters are removed during
the clean up process. During a non-interactive session, the SIGINT signal will terminate the entire
run of be.

LIMITS
The following are the limits currently in place for this be processor. Some of them may have been changed
by an installation. Use the limits statement to see the actual values.

BC_BASE_MAX
The maximum output base is currently set at 999. The maximum input base is 16.

BC_DIM_MAX
This is currently an arbitrary limit of 65535 as distributed. Your installation may be different.

BC_SCALE_MAX
The number of digits after the decimal point is limited to INT_MAX digits. Also, the number of
digits before the decimal point is limited to INT_MAX digits.

GNU Project 2006-06-11 10

bc(1) General Commands Manual be(1)

BC_STRING_MAX
The limit on the number of characters in a string is INT_MAX characters.

exponent
The value of the exponent in the raise operation (*) is limited to LONG_MAX.

variable names
The current limit on the number of unique names is 32767 for each of simple variables, arrays and
functions.

ENVIRONMENT VARIABLES

The following environment variables are processed by bc:

POSIXLY_CORRECT
This is the same as the -s option.

BC_ENV_ARGS
This is another mechanism to get arguments to be. The format is the same as the command line
arguments. These arguments are processed first, so any files listed in the environment arguments
are processed before any command line argument files. This allows the user to set up "standard"
options and files to be processed at every invocation of be. The files in the environment variables
would typically contain function definitions for functions the user wants defined every time be is
run.

BC_LINE_LENGTH
This should be an integer specifying the number of characters in an output line for numbers. This
includes the backslash and newline characters for long numbers. As an extension, the value of
zero disables the multi-line feature. Any other value of this variable that is less than 3 sets the line
length to 70.

DIAGNOSTICS
If any file on the command line can not be opened, be will report that the file is unavailable and terminate.
Also, there are compile and run time diagnostics that should be self-explanatory.

BUGS

Error recovery is not very good yet.

Email bug reports to bug-bc@gnu.org. Be sure to include the word “‘bc” somewhere in the *“Subject:”
field.

AUTHOR
Philip A. Nelson
philnelson@acm.org

ACKNOWLEDGEMENTS
The author would like to thank Steve Sommars (Steve.Sommars @att.com) for his extensive help in testing
the implementation. Many great suggestions were given. This is a much better product due to his involve-
ment.

GNU Project 2006-06-11 11

