
BTRFS−QUOTA(8) Btrfs Manual BTRFS−QUOTA(8)

NAME
btrfs-quota − control the global quota status of a btrfs filesystem

SYNOPSIS
btrfs quota <subcommand> <args>

DESCRIPTION
The commands under btrfs quota are used to affect the global status of quotas of a btrfs filesystem. The
quota groups (qgroups) are managed by the subcommand btrfs qgroup(8).

Note
Qgroups are different than the traditional user quotas and designed to track shared and exclusive data

per−subvolume. Please refer to the section HIERARCHICAL QUOTA GROUP CONCEPTS for a detailed

description.

PERFORMANCE IMPLICATIONS

When quotas are activated, they affect all extent processing, which takes a performance hit. Activation of
qgroups is not recommended unless the user intends to actually use them.

STABILITY STATUS

The qgroup implementation has turned out to be quite difficult as it affects the core of the filesystem
operation. Qgroup users have hit various corner cases over time, such as incorrect accounting or system
instability. The situation is gradually improving and issues found and fixed.

HIERARCHICAL QUOTA GROUP CONCEPTS
The concept of quota has a long−standing tradition in the Unix world. Ever since computers allow multiple
users to work simultaneously in one filesystem, there is the need to prevent one user from using up the
entire space. Every user should get his fair share of the available resources.

In case of files, the solution is quite straightforward. Each file has an owner recorded along with it, and it
has a size. Traditional quota just restricts the total size of all files that are owned by a user. The concept is
quite flexible: if a user hits his quota limit, the administrator can raise it on the fly.

On the other hand, the traditional approach has only a poor solution to restrict directories. At installation
time, the harddisk can be partitioned so that every directory (eg. /usr, /var/, ...) that needs a limit gets its
own partition. The obvious problem is that those limits cannot be changed without a reinstallation. The
btrfs subvolume feature builds a bridge. Subvolumes correspond in many ways to partitions, as every
subvolume looks like its own filesystem. With subvolume quota, it is now possible to restrict each
subvolume like a partition, but keep the flexibility of quota. The space for each subvolume can be expanded
or restricted on the fly.

As subvolumes are the basis for snapshots, interesting questions arise as to how to account used space in
the presence of snapshots. If you have a file shared between a subvolume and a snapshot, whom to account
the file to? The creator? Both? What if the file gets modified in the snapshot, should only these changes be
accounted to it? But wait, both the snapshot and the subvolume belong to the same user home. I just want to
limit the total space used by both! But somebody else might not want to charge the snapshots to the users.

Btrfs subvolume quota solves these problems by introducing groups of subvolumes and let the user put
limits on them. It is even possible to have groups of groups. In the following, we refer to them as qgroups.

Each qgroup primarily tracks two numbers, the amount of total referenced space and the amount of
exclusively referenced space.

referenced
space is the amount of data that can be reached from any of the subvolumes contained in the qgroup,
while

exclusive
is the amount of data where all references to this data can be reached from within this qgroup.

Btrfs v5.4.1 01/09/2020 1

BTRFS−QUOTA(8) Btrfs Manual BTRFS−QUOTA(8)

SUBVOLUME QUOTA GROUPS

The basic notion of the Subvolume Quota feature is the quota group, short qgroup. Qgroups are notated as
level/id, eg. the qgroup 3/2 is a qgroup of level 3. For level 0, the leading 0/ can be omitted. Qgroups of
level 0 get created automatically when a subvolume/snapshot gets created. The ID of the qgroup
corresponds to the ID of the subvolume, so 0/5 is the qgroup for the root subvolume. For the btrfs qgroup

command, the path to the subvolume can also be used instead of 0/ID. For all higher levels, the ID can be
chosen freely.

Each qgroup can contain a set of lower level qgroups, thus creating a hierarchy of qgroups. Figure 1 shows
an example qgroup tree.

+−−−+
|2/1|
+−−−+
/ \

+−−−+/ \+−−−+
|1/1| |1/2|
+−−−+ +−−−+
/ \ / \

+−−−+/ \+−−−+/ \+−−−+
qgroups |0/1| |0/2| |0/3|

+−+−+ +−−−+ +−−−+
| / \ / \
| / \ / \
| / \ / \

extents 1 2 3 4

Figure1: Sample qgroup hierarchy

At the bottom, some extents are depicted showing which qgroups reference which extents. It is important to
understand the notion of referenced vs exclusive. In the example, qgroup 0/2 references extents 2 and 3,
while 1/2 references extents 2−4, 2/1 references all extents.

On the other hand, extent 1 is exclusive to 0/1, extent 2 is exclusive to 0/2, while extent 3 is neither
exclusive to 0/2 nor to 0/3. But because both references can be reached from 1/2, extent 3 is exclusive to
1/2. All extents are exclusive to 2/1.

So exclusive does not mean there is no other way to reach the extent, but it does mean that if you delete all
subvolumes contained in a qgroup, the extent will get deleted.

Exclusive of a qgroup conveys the useful information how much space will be freed in case all subvolumes
of the qgroup get deleted.

All data extents are accounted this way. Metadata that belongs to a specific subvolume (i.e. its filesystem
tree) is also accounted. Checksums and extent allocation information are not accounted.

In turn, the referenced count of a qgroup can be limited. All writes beyond this limit will lead to a Quota

Exceeded error.

INHERITANCE

Things get a bit more complicated when new subvolumes or snapshots are created. The case of (empty)
subvolumes is still quite easy. If a subvolume should be part of a qgroup, it has to be added to the qgroup at
creation time. To add it at a later time, it would be necessary to at least rescan the full subvolume for a
proper accounting.

Btrfs v5.4.1 01/09/2020 2

BTRFS−QUOTA(8) Btrfs Manual BTRFS−QUOTA(8)

Creation of a snapshot is the hard case. Obviously, the snapshot will reference the exact amount of space as
its source, and both source and destination now hav e an exclusive count of 0 (the filesystem nodesize to be
precise, as the roots of the trees are not shared). But what about qgroups of higher levels? If the qgroup
contains both the source and the destination, nothing changes. If the qgroup contains only the source, it
might lose some exclusive.

But how much? The tempting answer is, subtract all exclusive of the source from the qgroup, but that is
wrong, or at least not enough. There could have been an extent that is referenced from the source and
another subvolume from that qgroup. This extent would have been exclusive to the qgroup, but not to the
source subvolume. With the creation of the snapshot, the qgroup would also lose this extent from its
exclusive set.

So how can this problem be solved? In the instant the snapshot gets created, we already have to know the
correct exclusive count. We need to have a second qgroup that contains all the subvolumes as the first
qgroup, except the subvolume we want to snapshot. The moment we create the snapshot, the exclusive
count from the second qgroup needs to be copied to the first qgroup, as it represents the correct value. The
second qgroup is called a tracking qgroup. It is only there in case a snapshot is needed.

USE CASES

Below are some usecases that do not mean to be extensive. You can find your own way how to integrate
qgroups.

SINGLE-USER MACHINE
Replacement for partitions

The simplest use case is to use qgroups as simple replacement for partitions. Btrfs takes the disk as a
whole, and /, /usr, /var, etc. are created as subvolumes. As each subvolume gets it own qgroup
automatically, they can simply be restricted. No hierarchy is needed for that.

Track usage of snapshots

When a snapshot is taken, a qgroup for it will automatically be created with the correct values.
Referenced will show how much is in it, possibly shared with other subvolumes. Exclusive will be the
amount of space that gets freed when the subvolume is deleted.

MULTI-USER MACHINE
Restricting homes

When you have sev eral users on a machine, with home directories probably under /home, you might
want to restrict /home as a whole, while restricting every user to an individual limit as well. This is
easily accomplished by creating a qgroup for /home , eg. 1/1, and assigning all user subvolumes to it.
Restricting this qgroup will limit /home, while every user subvolume can get its own (lower) limit.

Accounting snapshots to the user

Let’s say the user is allowed to create snapshots via some mechanism. It would only be fair to account
space used by the snapshots to the user. This does not mean the user doubles his usage as soon as he
takes a snapshot. Of course, files that are present in his home and the snapshot should only be
accounted once. This can be accomplished by creating a qgroup for each user, say 1/UID. The user
home and all snapshots are assigned to this qgroup. Limiting it will extend the limit to all snapshots,
counting files only once. To limit /home as a whole, a higher level group 2/1 replacing 1/1 from the
previous example is needed, with all user qgroups assigned to it.

Do not account snapshots

Btrfs v5.4.1 01/09/2020 3

BTRFS−QUOTA(8) Btrfs Manual BTRFS−QUOTA(8)

On the other hand, when the snapshots get created automatically, the user has no chance to control
them, so the space used by them should not be accounted to him. This is already the case when
creating snapshots in the example from the previous section.

Snapshots for backup purposes

This scenario is a mixture of the previous two. The user can create snapshots, but some snapshots for
backup purposes are being created by the system. The user’s snapshots should be accounted to the
user, not the system. The solution is similar to the one from section Accounting snapshots to the user,
but do not assign system snapshots to user’s qgroup.

SUBCOMMAND
disable <path>

Disable subvolume quota support for a filesystem.

enable <path>

Enable subvolume quota support for a filesystem.

rescan [−s] <path>

Trash all qgroup numbers and scan the metadata again with the current config.

Options

−s
show status of a running rescan operation.

−w
wait for rescan operation to finish(can be already in progress).

EXIT STATUS
btrfs quota returns a zero exit status if it succeeds. Non zero is returned in case of failure.

AV AILABILITY
btrfs is part of btrfs−progs. Please refer to the btrfs wiki http://btrfs.wiki.kernel.org for further details.

SEE ALSO
mkfs.btrfs(8), btrfs−subvolume(8), btrfs−qgroup(8)

Btrfs v5.4.1 01/09/2020 4

