
CAPGET(2) Linux Programmer’s Manual CAPGET(2)

NAME
capget, capset − set/get capabilities of thread(s)

SYNOPSIS
#include <sys/capability.h>

int capget(cap_user_header_t hdrp, cap_user_data_t datap);

int capset(cap_user_header_t hdrp, const cap_user_data_t datap);

DESCRIPTION
These two system calls are the raw kernel interface for getting and setting thread capabilities. Not only are

these system calls specific to Linux, but the kernel API is likely to change and use of these system calls (in

particular the format of the cap_user_*_t types) is subject to extension with each kernel revision, but old

programs will keep working.

The portable interfaces are cap_set_proc(3) and cap_get_proc(3); if possible, you should use those inter-

faces in applications.

Current details

Now that you have been warned, some current kernel details. The structures are defined as follows.

#define _LINUX_CAPABILITY_VERSION_1 0x19980330

#define _LINUX_CAPABILITY_U32S_1 1

/* V2 added in Linux 2.6.25; deprecated */

#define _LINUX_CAPABILITY_VERSION_2 0x20071026

#define _LINUX_CAPABILITY_U32S_2 2

/* V3 added in Linux 2.6.26 */

#define _LINUX_CAPABILITY_VERSION_3 0x20080522

#define _LINUX_CAPABILITY_U32S_3 2

typedef struct __user_cap_header_struct {

__u32 version;

int pid;

} *cap_user_header_t;

typedef struct __user_cap_data_struct {

__u32 effective;

__u32 permitted;

__u32 inheritable;

} *cap_user_data_t;

The effective, permitted , and inheritable fields are bit masks of the capabilities defined in capabilities(7).

Note that the CAP_* values are bit indexes and need to be bit-shifted before ORing into the bit fields. To

define the structures for passing to the system call, you have to use the struct __user_cap_header_struct

and struct __user_cap_data_struct names because the typedefs are only pointers.

Kernels prior to 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPABILITY_VERSION_1.

Linux 2.6.25 added 64-bit capability sets, with version _LINUX_CAPABILITY_VERSION_2. There

was, however, an API glitch, and Linux 2.6.26 added _LINUX_CAPABILITY_VERSION_3 to fix the

problem.

Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities use only datap[0].

On kernels that support file capabilities (VFS capabilities support), these system calls behave slightly dif-

ferently. This support was added as an option in Linux 2.6.24, and became fixed (nonoptional) in Linux

2.6.33.

For capget() calls, one can probe the capabilities of any process by specifying its process ID with the

hdrp->pid field value.

Linux 2020-02-09 1



CAPGET(2) Linux Programmer’s Manual CAPGET(2)

For details on the data, see capabilities(7).

With VFS capabilities support

VFS capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to be attached to exe-

cutables. This privilege model obsoletes kernel support for one process asynchronously setting the capabil-

ities of another. That is, on kernels that have VFS capabilities support, when calling capset(), the only per-

mitted values for hdrp->pid are 0 or, equivalently, the value returned by gettid(2).

Without VFS capabilities support

On older kernels that do not provide VFS capabilities support capset() can, if the caller has the CAP_SET-

PCAP capability, be used to change not only the caller’s own capabilities, but also the capabilities of other

threads. The call operates on the capabilities of the thread specified by the pid field of hdrp when that is

nonzero, or on the capabilities of the calling thread if pid is 0. If pid refers to a single-threaded process,

then pid can be specified as a traditional process ID; operating on a thread of a multithreaded process re-

quires a thread ID of the type returned by gettid(2). For capset(), pid can also be: −1, meaning perform

the change on all threads except the caller and init(1); or a value less than −1, in which case the change is

applied to all members of the process group whose ID is −pid.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

The calls fail with the error EINVAL, and set the version field of hdrp to the kernel preferred value of

_LINUX_CAPABILITY_VERSION_? when an unsupported version value is specified. In this way, one

can probe what the current preferred capability revision is.

ERRORS
EFAULT

Bad memory address. hdrp must not be NULL. datap may be NULL only when the user is trying

to determine the preferred capability version format supported by the kernel.

EINVAL

One of the arguments was invalid.

EPERM

An attempt was made to add a capability to the permitted set, or to set a capability in the effective

set that is not in the permitted set.

EPERM

An attempt was made to add a capability to the inheritable set, and either:

* that capability was not in the caller’s bounding set; or

* the capability was not in the caller’s permitted set and the caller lacked the CAP_SETPCAP

capability in its effective set.

EPERM

The caller attempted to use capset() to modify the capabilities of a thread other than itself, but

lacked sufficient privilege. For kernels supporting VFS capabilities, this is never permitted. For

kernels lacking VFS support, the CAP_SETPCAP capability is required. (A bug in kernels be-

fore 2.6.11 meant that this error could also occur if a thread without this capability tried to change

its own capabilities by specifying the pid field as a nonzero value (i.e., the value returned by get-

pid(2)) instead of 0.)

ESRCH

No such thread.

CONFORMING TO
These system calls are Linux-specific.

NOTES
The portable interface to the capability querying and setting functions is provided by the libcap library and

is available here:

〈http://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git〉

Linux 2020-02-09 2



CAPGET(2) Linux Programmer’s Manual CAPGET(2)

SEE ALSO
clone(2), gettid(2), capabilities(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2020-02-09 3


