
CORE(5) Linux Programmer’s Manual CORE(5)

NAME
core − core dump file

DESCRIPTION
The default action of certain signals is to cause a process to terminate and produce a core dump file, a disk
file containing an image of the process’s memory at the time of termination. This image can be used in a
debugger (e.g., gdb(1)) to inspect the state of the program at the time that it terminated. A list of the sig-
nals which cause a process to dump core can be found in signal(7).

A process can set its soft RLIMIT_CORE resource limit to place an upper limit on the size of the core
dump file that will be produced if it receives a "core dump" signal; see getrlimit(2) for details.

There are various circumstances in which a core dump file is not produced:

* The process does not have permission to write the core file. (By default, the core file is called core or
core.pid , where pid is the ID of the process that dumped core, and is created in the current working di-
rectory. See below for details on naming.) Writing the core file fails if the directory in which it is to be
created is nonwritable, or if a file with the same name exists and is not writable or is not a regular file
(e.g., it is a directory or a symbolic link).

* A (writable, regular) file with the same name as would be used for the core dump already exists, but
there is more than one hard link to that file.

* The filesystem where the core dump file would be created is full; or has run out of inodes; or is
mounted read-only; or the user has reached their quota for the filesystem.

* The directory in which the core dump file is to be created does not exist.

* The RLIMIT_CORE (core file size) or RLIMIT_FSIZE (file size) resource limits for the process are
set to zero; see getrlimit(2) and the documentation of the shell’s ulimit command (limit in csh(1)).

* The binary being executed by the process does not have read permission enabled.

* The process is executing a set-user-ID (set-group-ID) program that is owned by a user (group) other
than the real user (group) ID of the process, or the process is executing a program that has file capabili-
ties (see capabilities(7)). (However, see the description of the prctl(2) PR_SET_DUMPABLE opera-
tion, and the description of the /proc/sys/fs/suid_dumpable file in proc(5).)

* /proc/sys/kernel/core_pattern is empty and /proc/sys/kernel/core_uses_pid contains the value 0. (These
files are described below.) Note that if /proc/sys/kernel/core_pattern is empty and /proc/sys/ker-

nel/core_uses_pid contains the value 1, core dump files will have names of the form .pid , and such files
are hidden unless one uses the ls(1) −a option.

* (Since Linux 3.7) The kernel was configured without the CONFIG_COREDUMP option.

In addition, a core dump may exclude part of the address space of the process if the madvise(2)
MADV_DONTDUMP flag was employed.

On systems that employ systemd(1) as the init framework, core dumps may instead be placed in a location
determined by systemd(1). See below for further details.

Naming of core dump files
By default, a core dump file is named core, but the /proc/sys/kernel/core_pattern file (since Linux 2.6 and
2.4.21) can be set to define a template that is used to name core dump files. The template can contain %
specifiers which are substituted by the following values when a core file is created:

%%
a single % character

%c core file size soft resource limit of crashing process (since Linux 2.6.24)
%d dump mode—same as value returned by prctl(2) PR_GET_DUMPABLE (since Linux 3.7)
%e executable filename (without path prefix)
%E pathname of executable, with slashes ('/') replaced by exclamation marks ('!') (since Linux 3.0).
%g (numeric) real GID of dumped process

Linux 2019-10-10 1

CORE(5) Linux Programmer’s Manual CORE(5)

%h hostname (same as nodename returned by uname(2))
%i TID of thread that triggered core dump, as seen in the PID namespace in which the thread resides

(since Linux 3.18)
%I TID of thread that triggered core dump, as seen in the initial PID namespace (since Linux 3.18)
%p PID of dumped process, as seen in the PID namespace in which the process resides
%P PID of dumped process, as seen in the initial PID namespace (since Linux 3.12)
%s number of signal causing dump
%t time of dump, expressed as seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC)
%u (numeric) real UID of dumped process

A single % at the end of the template is dropped from the core filename, as is the combination of a % fol-
lowed by any character other than those listed above. All other characters in the template become a literal
part of the core filename. The template may include '/' characters, which are interpreted as delimiters for
directory names. The maximum size of the resulting core filename is 128 bytes (64 bytes in kernels before
2.6.19). The default value in this file is "core". For backward compatibility, if /proc/sys/kernel/core_pat-

tern does not include %p and /proc/sys/kernel/core_uses_pid (see below) is nonzero, then .PID will be ap-
pended to the core filename.

Paths are interpreted according to the settings that are active for the crashing process. That means the
crashing process’s mount namespace (see mount_namespaces(7)), its current working directory (found via
getcwd(2)), and its root directory (see chroot(2)).

Since version 2.4, Linux has also provided a more primitive method of controlling the name of the core
dump file. If the /proc/sys/kernel/core_uses_pid file contains the value 0, then a core dump file is simply
named core. If this file contains a nonzero value, then the core dump file includes the process ID in a name
of the form core.PID.

Since Linux 3.6, if /proc/sys/fs/suid_dumpable is set to 2 ("suidsafe"), the pattern must be either an abso-
lute pathname (starting with a leading '/' character) or a pipe, as defined below.

Piping core dumps to a program
Since kernel 2.6.19, Linux supports an alternate syntax for the /proc/sys/kernel/core_pattern file. If the
first character of this file is a pipe symbol (|), then the remainder of the line is interpreted as the command-
line for a user-space program (or script) that is to be executed.

Since kernel 5.3.0, the pipe template is split on spaces into an argument list before the template parameters
are expanded. In earlier kernels, the template parameters are expanded first and the resulting string is split
on spaces into an argument list. This means that in earlier kernels executable names added by the %e and
%E template parameters could get split into multiple arguments. So the core dump handler needs to put the
executable names as the last argument and ensure it joins all parts of the executable name using spaces. Ex-
ecutable names with multiple spaces in them are not correctly represented in earlier kernels, meaning that
the core dump handler needs to use mechanisms to find the executable name.

Instead of being written to a disk file, the core dump is given as standard input to the program. Note the
following points:

* The program must be specified using an absolute pathname (or a pathname relative to the root directory,
/), and must immediately follow the ’|’ character.

* The command-line arguments can include any of the % specifiers listed above. For example, to pass the
PID of the process that is being dumped, specify %p in an argument.

* The process created to run the program runs as user and group root.

* Running as root does not confer any exceptional security bypasses. Namely, LSMs (e.g., SELinux) are
still active and may prevent the handler from accessing details about the crashed process via
/proc/[pid].

* The program pathname is interpreted with respect to the initial mount namespace as it is always exe-
cuted there. It is not affected by the settings (e.g., root directory, mount namespace, current working di-
rectory) of the crashing process.

Linux 2019-10-10 2

CORE(5) Linux Programmer’s Manual CORE(5)

* The process runs in the initial namespaces (PID, mount, user, and so on) and not in the namespaces of
the crashing process. One can utilize specifiers such as %P to find the right /proc/[pid] directory and
probe/enter the crashing process’s namespaces if needed.

* The process starts with its current working directory as the root directory. If desired, it is possible
change to the working directory of the dumping process by employing the value provided by the %P

specifier to change to the location of the dumping process via /proc/[pid]/cwd .

* Command-line arguments can be supplied to the program (since Linux 2.6.24), delimited by white
space (up to a total line length of 128 bytes).

* The RLIMIT_CORE limit is not enforced for core dumps that are piped to a program via this mecha-
nism.

/proc/sys/kernel/core_pipe_limit
When collecting core dumps via a pipe to a user-space program, it can be useful for the collecting program
to gather data about the crashing process from that process’s /proc/[pid] directory. In order to do this
safely, the kernel must wait for the program collecting the core dump to exit, so as not to remove the crash-
ing process’s /proc/[pid] files prematurely. This in turn creates the possibility that a misbehaving collect-
ing program can block the reaping of a crashed process by simply never exiting.

Since Linux 2.6.32, the /proc/sys/kernel/core_pipe_limit can be used to defend against this possibility. The
value in this file defines how many concurrent crashing processes may be piped to user-space programs in
parallel. If this value is exceeded, then those crashing processes above this value are noted in the kernel log
and their core dumps are skipped.

A value of 0 in this file is special. It indicates that unlimited processes may be captured in parallel, but that
no waiting will take place (i.e., the collecting program is not guaranteed access to /proc/<crashing-PID>).
The default value for this file is 0.

Controlling which mappings are written to the core dump
Since kernel 2.6.23, the Linux-specific /proc/[pid]/coredump_filter file can be used to control which mem-
ory segments are written to the core dump file in the event that a core dump is performed for the process
with the corresponding process ID.

The value in the file is a bit mask of memory mapping types (see mmap(2)). If a bit is set in the mask, then
memory mappings of the corresponding type are dumped; otherwise they are not dumped. The bits in this
file have the following meanings:

bit 0 Dump anonymous private mappings.
bit 1 Dump anonymous shared mappings.
bit 2 Dump file-backed private mappings.
bit 3 Dump file-backed shared mappings.
bit 4 (since Linux 2.6.24)

Dump ELF headers.
bit 5 (since Linux 2.6.28)

Dump private huge pages.
bit 6 (since Linux 2.6.28)

Dump shared huge pages.
bit 7 (since Linux 4.4)

Dump private DAX pages.
bit 8 (since Linux 4.4)

Dump shared DAX pages.

By default, the following bits are set: 0, 1, 4 (if the CONFIG_CORE_DUMP_DEFAULT_ELF_HEAD-
ERS kernel configuration option is enabled), and 5. This default can be modified at boot time using the
coredump_filter boot option.

The value of this file is displayed in hexadecimal. (The default value is thus displayed as 33.)

Memory-mapped I/O pages such as frame buffer are never dumped, and virtual DSO (vdso(7)) pages are
always dumped, regardless of the coredump_filter value.

Linux 2019-10-10 3

CORE(5) Linux Programmer’s Manual CORE(5)

A child process created via fork(2) inherits its parent’s coredump_filter value; the coredump_filter value is
preserved across an execve(2).

It can be useful to set coredump_filter in the parent shell before running a program, for example:

$ echo 0x7 > /proc/self/coredump_filter
$./some_program

This file is provided only if the kernel was built with the CONFIG_ELF_CORE configuration option.

Core dumps and systemd
On systems using the systemd(1) init framework, core dumps may be placed in a location determined by
systemd(1). To do this, systemd(1) employs the core_pattern feature that allows piping core dumps to a
program. One can verify this by checking whether core dumps are being piped to the systemd−core-
dump(8) program:

$ cat /proc/sys/kernel/core_pattern
|/usr/lib/systemd/systemd−coredump %P %u %g %s %t %c %e

In this case, core dumps will be placed in the location configured for systemd−coredump(8), typically as
lz4(1) compressed files in the directory /var/lib/systemd/coredump/ . One can list the core dumps that have
been recorded by systemd−coredump(8) using coredumpctl(1):

$ coredumpctl list | tail -5
Wed 2017-10-11 22:25:30 CEST 2748 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:29:10 CEST 2716 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:30:50 CEST 2767 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:37:40 CEST 2918 1000 1000 3 present /usr/bin/cat
Thu 2017-10-12 08:13:07 CEST 2955 1000 1000 3 present /usr/bin/cat

The information shown for each core dump includes the date and time of the dump, the PID, UID, and GID
of the dumping process, the signal number that caused the core dump, and the pathname of the executable
that was being run by the dumped process. Various options to coredumpctl(1) allow a specified coredump
file to be pulled from the systemd(1) location into a specified file. For example, to extract the core dump
for PID 2955 shown above to a file named core in the current directory, one could use:

$ coredumpctl dump 2955 −o core

For more extensive details, see the coredumpctl(1) manual page.

To disable the systemd(1) mechanism that archives core dumps, restoring to something more like tradi-
tional Linux behavior, one can set an override for the systemd(1) mechanism, using something like:

echo "kernel.core_pattern=core.%p" > /etc/sysctl.d/50−coredump.conf
/lib/systemd/systemd−sysctl

NOTES
The gdb(1) gcore command can be used to obtain a core dump of a running process.

In Linux versions up to and including 2.6.27, if a multithreaded process (or, more precisely, a process that
shares its memory with another process by being created with the CLONE_VM flag of clone(2)) dumps
core, then the process ID is always appended to the core filename, unless the process ID was already in-
cluded elsewhere in the filename via a %p specification in /proc/sys/kernel/core_pattern. (This is primarily
useful when employing the obsolete LinuxThreads implementation, where each thread of a process has a
different PID.)

EXAMPLE
The program below can be used to demonstrate the use of the pipe syntax in the /proc/sys/kernel/core_pat-

tern file. The following shell session demonstrates the use of this program (compiled to create an exe-
cutable named core_pattern_pipe_test):

$ cc −o core_pattern_pipe_test core_pattern_pipe_test.c
$ su
Password:

Linux 2019-10-10 4

CORE(5) Linux Programmer’s Manual CORE(5)

echo "|$PWD/core_pattern_pipe_test %p UID=%u GID=%g sig=%s" > \
/proc/sys/kernel/core_pattern

exit
$ sleep 100
ˆ\ # type control-backslash
Quit (core dumped)
$ cat core.info
argc=5
argc[0]=</home/mtk/core_pattern_pipe_test>
argc[1]=<20575>
argc[2]=<UID=1000>
argc[3]=<GID=100>
argc[4]=<sig=3>
Total bytes in core dump: 282624

Program source

/* core_pattern_pipe_test.c */

#define _GNU_SOURCE
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

int tot, j;
ssize_t nread;
char buf[BUF_SIZE];
FILE *fp;
char cwd[PATH_MAX];

/* Change our current working directory to that of the
crashing process */

snprintf(cwd, PATH_MAX, "/proc/%s/cwd", argv[1]);
chdir(cwd);

/* Write output to file "core.info" in that directory */

fp = fopen("core.info", "w+");
if (fp == NULL)

exit(EXIT_FAILURE);

/* Display command−line arguments given to core_pattern
pipe program */

fprintf(fp, "argc=%d\n", argc);
for (j = 0; j < argc; j++)

Linux 2019-10-10 5

CORE(5) Linux Programmer’s Manual CORE(5)

fprintf(fp, "argc[%d]=<%s>\n", j, argv[j]);

/* Count bytes in standard input (the core dump) */

tot = 0;
while ((nread = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)

tot += nread;
fprintf(fp, "Total bytes in core dump: %d\n", tot);

fclose(fp);
exit(EXIT_SUCCESS);

}

SEE ALSO
bash(1), coredumpctl(1), gdb(1), getrlimit(2), mmap(2), prctl(2), sigaction(2), elf(5), proc(5),
pthreads(7), signal(7), systemd−coredump(8)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 6

