
dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

NAME
dpkg−gensymbols − generate symbols files (shared library dependency information)

SYNOPSIS
dpkg−gensymbols [option...]

DESCRIPTION
dpkg−gensymbols scans a temporary build tree (debian/tmp by default) looking for libraries and generates
a symbols file describing them. This file, if non-empty, is then installed in the DEBIAN subdirectory of the
build tree so that it ends up included in the control information of the package.

When generating those files, it uses as input some symbols files provided by the maintainer. It looks for the
following files (and uses the first that is found):

• debian/package.symbols.arch

• debian/symbols.arch

• debian/package.symbols

• debian/symbols

The main interest of those files is to provide the minimal version associated to each symbol provided by the
libraries. Usually it corresponds to the first version of that package that provided the symbol, but it can be
manually incremented by the maintainer if the ABI of the symbol is extended without breaking backwards
compatibility. It’s the responsibility of the maintainer to keep those files up-to-date and accurate, but
dpkg−gensymbols helps with that.

When the generated symbols files differ from the maintainer supplied one, dpkg−gensymbols will print a
diff between the two versions. Furthermore if the difference is too significant, it will even fail (you can
customize how much difference you can tolerate, see the −c option).

MAINTAINING SYMBOLS FILES
The symbols files are really useful only if they reflect the evolution of the package through several releases.
Thus the maintainer has to update them every time that a new symbol is added so that its associated
minimal version matches reality. The diffs contained in the build logs can be used as a starting point, but
the maintainer, additionally, has to make sure that the behaviour of those symbols has not changed in a way
that would make anything using those symbols and linking against the new version, stop working with the
old version. In most cases, the diff applies directly to the debian/package.symbols file. That said, further
tweaks are usually needed: it’s recommended for example to drop the Debian revision from the minimal
version so that backports with a lower version number but the same upstream version still satisfy the
generated dependencies. If the Debian revision can’t be dropped because the symbol really got added by
the Debian specific change, then one should suffix the version with ‘˜’.

Before applying any patch to the symbols file, the maintainer should double-check that it’s sane. Public
symbols are not supposed to disappear, so the patch should ideally only add new lines.

Note that you can put comments in symbols files: any line with ‘#’ as the first character is a comment
except if it starts with ‘#include’ (see section Using includes). Lines starting with ‘#MISSING:’ are
special comments documenting symbols that have disappeared.

Do not forget to check if old symbol versions need to be increased. There is no way dpkg−gensymbols
can warn about this. Blindly applying the diff or assuming there is nothing to change if there is no diff,
without checking for such changes, can lead to packages with loose dependencies that claim they can work
with older packages they cannot work with. This will introduce hard to find bugs with (partial) upgrades.

Using #PACKAGE# substitution
In some rare cases, the name of the library varies between architectures. To avoid hardcoding the name of
the package in the symbols file, you can use the marker #PACKAGE#. It will be replaced by the real
package name during installation of the symbols files. Contrary to the #MINVER# marker, #PACKAGE#

will never appear in a symbols file inside a binary package.

1.19.7 2022-05-25 1

dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

Using symbol tags
Symbol tagging is useful for marking symbols that are special in some way. Any symbol can have an
arbitrary number of tags associated with it. While all tags are parsed and stored, only some of them are
understood by dpkg−gensymbols and trigger special handling of the symbols. See subsection Standard
symbol tags for reference of these tags.

Tag specification comes right before the symbol name (no whitespace is allowed in between). It always
starts with an opening bracket (, ends with a closing bracket) and must contain at least one tag. Multiple
tags are separated by the | character. Each tag can optionally have a value which is separated form the tag
name by the = character. Tag names and values can be arbitrary strings except they cannot contain any of
the special) | = characters. Symbol names following a tag specification can optionally be quoted with either
’ or " characters to allow whitespaces in them. However, if there are no tags specified for the symbol,
quotes are treated as part of the symbol name which continues up until the first space.

(tag1=i am marked|tag name with space)"tagged quoted symbol"@Base 1.0
(optional)tagged_unquoted_symbol@Base 1.0 1
untagged_symbol@Base 1.0

The first symbol in the example is named tagged quoted symbol and has two tags: tag1 with value i am

marked and tag name with space that has no value. The second symbol named tagged_unquoted_symbol is
only tagged with the tag named optional. The last symbol is an example of the normal untagged symbol.

Since symbol tags are an extension of the deb−symbols(5) format, they can only be part of the symbols
files used in source packages (those files should then be seen as templates used to build the symbols files
that are embedded in binary packages). When dpkg−gensymbols is called without the −t option, it will
output symbols files compatible to the deb−symbols(5) format: it fully processes symbols according to the
requirements of their standard tags and strips all tags from the output. On the contrary, in template mode
(−t) all symbols and their tags (both standard and unknown ones) are kept in the output and are written in
their original form as they were loaded.

Standard symbol tags
optional

A symbol marked as optional can disappear from the library at any time and that will never cause
dpkg−gensymbols to fail. However, disappeared optional symbols will continuously appear as
MISSING in the diff in each new package revision. This behaviour serves as a reminder for the
maintainer that such a symbol needs to be removed from the symbol file or readded to the library.
When the optional symbol, which was previously declared as MISSING, suddenly reappears in the
next revision, it will be upgraded back to the “existing” status with its minimum version
unchanged.

This tag is useful for symbols which are private where their disappearance do not cause ABI
breakage. For example, most of C++ template instantiations fall into this category. Like any other
tag, this one may also have an arbitrary value: it could be used to indicate why the symbol is
considered optional.

arch=architecture-list

arch−bits=architecture-bits

arch−endian=architecture-endianness

These tags allow one to restrict the set of architectures where the symbol is supposed to exist. The
arch−bits and arch−endian tags are supported since dpkg 1.18.0. When the symbols list is
updated with the symbols discovered in the library, all arch-specific symbols which do not concern
the current host architecture are treated as if they did not exist. If an arch-specific symbol matching
the current host architecture does not exist in the library, normal procedures for missing symbols
apply and it may cause dpkg−gensymbols to fail. On the other hand, if the arch-specific symbol is
found when it was not supposed to exist (because the current host architecture is not listed in the
tag or does not match the endianness and bits), it is made arch neutral (i.e. the arch, arch-bits and
arch-endian tags are dropped and the symbol will appear in the diff due to this change), but it is
not considered as new.

1.19.7 2022-05-25 2

dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

When operating in the default non-template mode, among arch-specific symbols only those that
match the current host architecture are written to the symbols file. On the contrary, all arch-
specific symbols (including those from foreign arches) are always written to the symbol file when
operating in template mode.

The format of architecture-list is the same as the one used in the Build−Depends field of
debian/control (except the enclosing square brackets []). For example, the first symbol from the
list below will be considered only on alpha, any−amd64 and ia64 architectures, the second only on
linux architectures, while the third one anywhere except on armel.

(arch=alpha any−amd64 ia64)64bit_specific_symbol@Base 1.0
(arch=linux−any)linux_specific_symbol@Base 1.0
(arch=!armel)symbol_armel_does_not_have@Base 1.0

The architecture-bits is either 32 or 64.

(arch-bits=32)32bit_specific_symbol@Base 1.0
(arch-bits=64)64bit_specific_symbol@Base 1.0

The architecture-endianness is either little or big.

(arch-endian=little)little_endian_specific_symbol@Base 1.0
(arch-endian=big)big_endian_specific_symbol@Base 1.0

Multiple restrictions can be chained.

(arch-bits=32|arch-endian=little)32bit_le_symbol@Base 1.0

ignore−blacklist
dpkg−gensymbols has an internal blacklist of symbols that should not appear in symbols files as
they are usually only side-effects of implementation details of the toolchain. If for some reason,
you really want one of those symbols to be included in the symbols file, you should tag the symbol
with ignore−blacklist. It can be necessary for some low lev el toolchain libraries like libgcc.

c++ Denotes c++ symbol pattern. See Using symbol patterns subsection below.

symver Denotes symver (symbol version) symbol pattern. See Using symbol patterns subsection below.

regex Denotes regex symbol pattern. See Using symbol patterns subsection below.

Using symbol patterns
Unlike a standard symbol specification, a pattern may cover multiple real symbols from the library.
dpkg−gensymbols will attempt to match each pattern against each real symbol that does not have a specific
symbol counterpart defined in the symbol file. Whenever the first matching pattern is found, all its tags and
properties will be used as a basis specification of the symbol. If none of the patterns matches, the symbol
will be considered as new.

A pattern is considered lost if it does not match any symbol in the library. By default this will trigger a
dpkg−gensymbols failure under −c1 or higher level. However, if the failure is undesired, the pattern may
be marked with the optional tag. Then if the pattern does not match anything, it will only appear in the diff
as MISSING. Moreover, like any symbol, the pattern may be limited to the specific architectures with the
arch tag. Please refer to Standard symbol tags subsection above for more information.

Patterns are an extension of the deb−symbols(5) format hence they are only valid in symbol file templates.
Pattern specification syntax is not any different from the one of a specific symbol. However, symbol name
part of the specification serves as an expression to be matched against name@version of the real symbol. In
order to distinguish among different pattern types, a pattern will typically be tagged with a special tag.

1.19.7 2022-05-25 3

dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

At the moment, dpkg−gensymbols supports three basic pattern types:

c++
This pattern is denoted by the c++ tag. It matches only C++ symbols by their demangled symbol name
(as emitted by c++filt(1) utility). This pattern is very handy for matching symbols which mangled
names might vary across different architectures while their demangled names remain the same. One
group of such symbols is non−virtual thunks which have architecture specific offsets embedded in their
mangled names. A common instance of this case is a virtual destructor which under diamond
inheritance needs a non-virtual thunk symbol. For example, even if
_ZThn8_N3NSB6ClassDD1Ev@Base on 32bit architectures will probably be
_ZThn16_N3NSB6ClassDD1Ev@Base on 64bit ones, it can be matched with a single c++ pattern:

libdummy.so.1 libdummy1 #MINVER#
[...]
(c++)"non−virtual thunk to NSB::ClassD::˜ClassD()@Base" 1.0
[...]

The demangled name above can be obtained by executing the following command:

$ echo ’_ZThn8_N3NSB6ClassDD1Ev@Base’ | c++filt

Please note that while mangled name is unique in the library by definition, this is not necessarily true
for demangled names. A couple of distinct real symbols may have the same demangled name. For
example, that’s the case with non-virtual thunk symbols in complex inheritance configurations or with
most constructors and destructors (since g++ typically generates two real symbols for them). However,
as these collisions happen on the ABI level, they should not degrade quality of the symbol file.

symver
This pattern is denoted by the symver tag. Well maintained libraries have versioned symbols where each
version corresponds to the upstream version where the symbol got added. If that’s the case, you can use
a symver pattern to match any symbol associated to the specific version. For example:

libc.so.6 libc6 #MINVER#
(symver)GLIBC_2.0 2.0
[...]
(symver)GLIBC_2.7 2.7
access@GLIBC_2.0 2.2

All symbols associated with versions GLIBC_2.0 and GLIBC_2.7 will lead to minimal version of 2.0
and 2.7 respectively with the exception of the symbol access@GLIBC_2.0. The latter will lead to a
minimal dependency on libc6 version 2.2 despite being in the scope of the "(symver)GLIBC_2.0"
pattern because specific symbols take precedence over patterns.

Please note that while old style wildcard patterns (denoted by "*@version" in the symbol name field)
are still supported, they hav e been deprecated by new style syntax "(symver|optional)version". For
example, "*@GLIBC_2.0 2.0" should be written as "(symver|optional)GLIBC_2.0 2.0" if the same
behaviour is needed.

regex
Regular expression patterns are denoted by the regex tag. They match by the perl regular expression
specified in the symbol name field. A regular expression is matched as it is, therefore do not forget to
start it with the ˆ character or it may match any part of the real symbol name@version string. For
example:

libdummy.so.1 libdummy1 #MINVER#
(regex)"ˆmystack_.*@Base$" 1.0

1.19.7 2022-05-25 4

dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

(regex|optional)"private" 1.0

Symbols like "mystack_new@Base", "mystack_push@Base", "mystack_pop@Base" etc. will be
matched by the first pattern while e.g. "ng_mystack_new@Base" won’t. The second pattern will match
all symbols having the string "private" in their names and matches will inherit optional tag from the
pattern.

Basic patterns listed above can be combined where it makes sense. In that case, they are processed in the
order in which the tags are specified. For example, both

(c++|regex)"ˆNSA::ClassA::Private::privmethod\d\(int\)@Base" 1.0
(regex|c++)N3NSA6ClassA7Private11privmethod\dEi@Base 1.0

will match symbols "_ZN3NSA6ClassA7Private11privmethod1Ei@Base" and
"_ZN3NSA6ClassA7Private11privmethod2Ei@Base". When matching the first pattern, the raw symbol is
first demangled as C++ symbol, then the demangled name is matched against the regular expression. On the
other hand, when matching the second pattern, regular expression is matched against the raw symbol name,
then the symbol is tested if it is C++ one by attempting to demangle it. A failure of any basic pattern will
result in the failure of the whole pattern. Therefore, for example,
"__N3NSA6ClassA7Private11privmethod\dEi@Base" will not match either of the patterns because it is not
a valid C++ symbol.

In general, all patterns are divided into two groups: aliases (basic c++ and symver) and generic patterns
(regex, all combinations of multiple basic patterns). Matching of basic alias-based patterns is fast (O(1))
while generic patterns are O(N) (N - generic pattern count) for each symbol. Therefore, it is recommended
not to overuse generic patterns.

When multiple patterns match the same real symbol, aliases (first c++, then symver) are preferred over
generic patterns. Generic patterns are matched in the order they are found in the symbol file template until
the first success. Please note, however, that manual reordering of template file entries is not recommended
because dpkg−gensymbols generates diffs based on the alphanumerical order of their names.

Using includes
When the set of exported symbols differ between architectures, it may become inefficient to use a single
symbol file. In those cases, an include directive may prove to be useful in a couple of ways:

• You can factorize the common part in some external file and include that file in your
package.symbols.arch file by using an include directive like this:

#include "packages.symbols.common"

• The include directive may also be tagged like any symbol:

(tag|...|tagN)#include "file-to-include"

As a result, all symbols included from file-to-include will be considered to be tagged with tag ... tagN

by default. You can use this feature to create a common package.symbols file which includes
architecture specific symbol files:

common_symbol1@Base 1.0
(arch=amd64 ia64 alpha)#include "package.symbols.64bit"
(arch=!amd64 !ia64 !alpha)#include "package.symbols.32bit"
common_symbol2@Base 1.0

The symbols files are read line by line, and include directives are processed as soon as they are
encountered. This means that the content of the included file can override any content that appeared before
the include directive and that any content after the directive can override anything contained in the included

1.19.7 2022-05-25 5

dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

file. Any symbol (or even another #include directive) in the included file can specify additional tags or
override values of the inherited tags in its tag specification. However, there is no way for the symbol to
remove any of the inherited tags.

An included file can repeat the header line containing the SONAME of the library. In that case, it overrides
any header line previously read. However, in general it’s best to avoid duplicating header lines. One way to
do it is the following:

#include "libsomething1.symbols.common"
arch_specific_symbol@Base 1.0

Good library management
A well-maintained library has the following features:

• its API is stable (public symbols are never dropped, only new public symbols are added) and changes
in incompatible ways only when the SONAME changes;

• ideally, it uses symbol versioning to achieve ABI stability despite internal changes and API extension;

• it doesn’t export private symbols (such symbols can be tagged optional as workaround).

While maintaining the symbols file, it’s easy to notice appearance and disappearance of symbols. But it’s
more difficult to catch incompatible API and ABI change. Thus the maintainer should read thoroughly the
upstream changelog looking for cases where the rules of good library management have been broken. If
potential problems are discovered, the upstream author should be notified as an upstream fix is always
better than a Debian specific work-around.

OPTIONS
−P package-build-dir

Scan package-build-dir instead of debian/tmp.

−p package

Define the package name. Required if more than one binary package is listed in debian/control (or
if there’s no debian/control file).

−vversion

Define the package version. Defaults to the version extracted from debian/changelog. Required if
called outside of a source package tree.

−elibrary-file

Only analyze libraries explicitly listed instead of finding all public libraries. You can use shell
patterns used for pathname expansions (see the File::Glob(3perl) manual page for details) in
library-file to match multiple libraries with a single argument (otherwise you need multiple −e).

−ldirectory

Prepend directory to the list of directories to search for private shared libraries (since dpkg 1.19.1).
This option can be used multiple times.

Note: Use this option instead of setting LD_LIBRARY_PATH, as that environment variable is
used to control the run-time linker and abusing it to set the shared library paths at build-time can
be problematic when cross-compiling for example.

−I filename

Use filename as reference file to generate the symbols file that is integrated in the package itself.

−O[filename]
Print the generated symbols file to standard output or to filename if specified, rather than to
debian/tmp/DEBIAN/symbols (or package-build-dir/DEBIAN/symbols if −P was used). If
filename is pre-existing, its contents are used as basis for the generated symbols file. You can use
this feature to update a symbols file so that it matches a newer upstream version of your library.

−t Write the symbol file in template mode rather than the format compatible with deb−symbols(5).
The main difference is that in the template mode symbol names and tags are written in their

1.19.7 2022-05-25 6

dpkg−gensymbols(1) dpkg suite dpkg−gensymbols(1)

original form contrary to the post-processed symbol names with tags stripped in the compatibility
mode. Moreover, some symbols might be omitted when writing a standard deb−symbols(5) file
(according to the tag processing rules) while all symbols are always written to the symbol file
template.

−c[0-4]

Define the checks to do when comparing the generated symbols file with the template file used as
starting point. By default the level is 1. Increasing levels do more checks and include all checks of
lower levels. Level 0 nev er fails. Level 1 fails if some symbols have disappeared. Level 2 fails if
some new symbols have been introduced. Level 3 fails if some libraries have disappeared. Level 4
fails if some libraries have been introduced.

This value can be overridden by the environment variable
DPKG_GENSYMBOLS_CHECK_LEVEL.

−q Keep quiet and never generate a diff between generated symbols file and the template file used as
starting point or show any warnings about new/lost libraries or new/lost symbols. This option only
disables informational output but not the checks themselves (see −c option).

−aarch Assume arch as host architecture when processing symbol files. Use this option to generate a
symbol file or diff for any architecture provided its binaries are already available.

−d Enable debug mode. Numerous messages are displayed to explain what dpkg−gensymbols does.

−V Enable verbose mode. The generated symbols file contains deprecated symbols as comments.
Furthermore in template mode, pattern symbols are followed by comments listing real symbols
that have matched the pattern.

−?, −−help
Show the usage message and exit.

−−version
Show the version and exit.

ENVIRONMENT
DPKG_GENSYMBOLS_CHECK_LEVEL

Overrides the command check level, even if the −c command-line argument was given (note that
this goes against the common convention of command-line arguments having precedence over
environment variables).

DPKG_COLORS
Sets the color mode (since dpkg 1.18.5). The currently accepted values are: auto (default), always
and never.

DPKG_NLS
If set, it will be used to decide whether to activate Native Language Support, also known as
internationalization (or i18n) support (since dpkg 1.19.0). The accepted values are: 0 and 1
(default).

SEE ALSO
https://people.redhat.com/drepper/symbol−versioning
https://people.redhat.com/drepper/goodpractice.pdf
https://people.redhat.com/drepper/dsohowto.pdf
deb−symbols(5), dpkg−shlibdeps(1).

1.19.7 2022-05-25 7

