
FANOTIFY_INIT(2) Linux Programmer’s Manual FANOTIFY_INIT(2)

NAME
fanotify_init − create and initialize fanotify group

SYNOPSIS
#include <fcntl.h>

#include <sys/fanotify.h>

int fanotify_init(unsigned int flags, unsigned int event_f_flags);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_init() initializes a new fanotify group and returns a file descriptor for the event queue associated

with the group.

The file descriptor is used in calls to fanotify_mark(2) to specify the files, directories, mounts or filesys-

tems for which fanotify events shall be created. These events are received by reading from the file descrip-

tor. Some events are only informative, indicating that a file has been accessed. Other events can be used to

determine whether another application is permitted to access a file or directory. Permission to access

filesystem objects is granted by writing to the file descriptor.

Multiple programs may be using the fanotify interface at the same time to monitor the same files.

In the current implementation, the number of fanotify groups per user is limited to 128. This limit cannot

be overridden.

Calling fanotify_init() requires the CAP_SYS_ADMIN capability. This constraint might be relaxed in fu-

ture versions of the API. Therefore, certain additional capability checks have been implemented as indi-

cated below.

The flags argument contains a multi-bit field defining the notification class of the listening application and

further single bit fields specifying the behavior of the file descriptor.

If multiple listeners for permission events exist, the notification class is used to establish the sequence in

which the listeners receive the events.

Only one of the following notification classes may be specified in flags:

FAN_CLASS_PRE_CONTENT

This value allows the receipt of events notifying that a file has been accessed and events for per-

mission decisions if a file may be accessed. It is intended for event listeners that need to access

files before they contain their final data. This notification class might be used by hierarchical stor-

age managers, for example.

FAN_CLASS_CONTENT

This value allows the receipt of events notifying that a file has been accessed and events for per-

mission decisions if a file may be accessed. It is intended for event listeners that need to access

files when they already contain their final content. This notification class might be used by mal-

ware detection programs, for example.

FAN_REPORT_FID (since Linux 5.1)

This value allows the receipt of events which contain additional information about the underlying

filesystem object correlated to an event. An additional structure encapsulates the information

about the object and is included alongside the generic event metadata structure. The file descriptor

that is used to represent the object correlated to an event is instead substituted with a file handle. It

is intended for applications that may find the use of a file handle to identify an object more suit-

able than a file descriptor. Additionally, it may be used for applications that are interested in direc-

tory entry events, such as FAN_CREATE, FAN_ATTRIB, FAN_MOVE, and FAN_DELETE

for example. Note that the use of directory modification events are not supported when monitor-

ing a mount point. The use of FAN_CLASS_CONTENT or FAN_CLASS_PRE_CONTENT is

not permitted with this flag and will result in the error EINVAL. See fanotify(7) for additional in-

formation.

Linux 2019-08-02 1



FANOTIFY_INIT(2) Linux Programmer’s Manual FANOTIFY_INIT(2)

FAN_CLASS_NOTIF

This is the default value. It does not need to be specified. This value only allows the receipt of

ev ents notifying that a file has been accessed. Permission decisions before the file is accessed are

not possible.

Listeners with different notification classes will receive events in the order FAN_CLASS_PRE_CON-

TENT, FAN_CLASS_CONTENT, FAN_CLASS_NOTIF. The order of notification for listeners in the

same notification class is undefined.

The following bits can additionally be set in flags:

FAN_CLOEXEC

Set the close-on-exec flag (FD_CLOEXEC) on the new file descriptor. See the description of the

O_CLOEXEC flag in open(2).

FAN_NONBLOCK

Enable the nonblocking flag (O_NONBLOCK) for the file descriptor. Reading from the file de-

scriptor will not block. Instead, if no data is available, read(2) fails with the error EAGAIN.

FAN_UNLIMITED_QUEUE

Remove the limit of 16384 events for the event queue. Use of this flag requires the

CAP_SYS_ADMIN capability.

FAN_UNLIMITED_MARKS

Remove the limit of 8192 marks. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_REPORT_TID (since Linux 4.20)

Report thread ID (TID) instead of process ID (PID) in the pid field of the struct fan-

otify_event_metadata supplied to read(2) (see fanotify(7)).

The event_f_flags argument defines the file status flags that will be set on the open file descriptions that are

created for fanotify events. For details of these flags, see the description of the flags values in open(2).

event_f_flags includes a multi-bit field for the access mode. This field can take the following values:

O_RDONLY

This value allows only read access.

O_WRONLY

This value allows only write access.

O_RDWR

This value allows read and write access.

Additional bits can be set in event_f_flags. The most useful values are:

O_LARGEFILE

Enable support for files exceeding 2 GB. Failing to set this flag will result in an EOVERFLOW

error when trying to open a large file which is monitored by an fanotify group on a 32-bit system.

O_CLOEXEC (since Linux 3.18)

Enable the close-on-exec flag for the file descriptor. See the description of the O_CLOEXEC flag

in open(2) for reasons why this may be useful.

The following are also allowable: O_APPEND, O_DSYNC, O_NOATIME, O_NONBLOCK, and

O_SYNC. Specifying any other flag in event_f_flags yields the error EINVAL (but see BUGS).

RETURN VALUE
On success, fanotify_init() returns a new file descriptor. On error, −1 is returned, and errno is set to indi-

cate the error.

ERRORS
EINVAL

An invalid value was passed in flags or event_f_flags. FAN_ALL_INIT_FLAGS (deprecated

since Linux kernel version 4.20) defines all allowable bits for flags.

Linux 2019-08-02 2



FANOTIFY_INIT(2) Linux Programmer’s Manual FANOTIFY_INIT(2)

EMFILE

The number of fanotify groups for this user exceeds 128.

EMFILE

The per-process limit on the number of open file descriptors has been reached.

ENOMEM

The allocation of memory for the notification group failed.

ENOSYS

This kernel does not implement fanotify_init(). The fanotify API is available only if the kernel

was configured with CONFIG_FANOTIFY.

EPERM

The operation is not permitted because the caller lacks the CAP_SYS_ADMIN capability.

VERSIONS
fanotify_init() was introduced in version 2.6.36 of the Linux kernel and enabled in version 2.6.37.

CONFORMING TO
This system call is Linux-specific.

BUGS
The following bug was present in Linux kernels before version 3.18:

* The O_CLOEXEC is ignored when passed in event_f_flags.

The following bug was present in Linux kernels before version 3.14:

* The event_f_flags argument is not checked for invalid flags. Flags that are intended only for internal

use, such as FMODE_EXEC, can be set, and will consequently be set for the file descriptors returned

when reading from the fanotify file descriptor.

SEE ALSO
fanotify_mark(2), fanotify(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 3


