
FOPENCOOKIE(3) Linux Programmer’s Manual FOPENCOOKIE(3)

NAME
fopencookie − opening a custom stream

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <stdio.h>

FILE *fopencookie(void *cookie, const char *mode,

cookie_io_functions_t io_funcs);

DESCRIPTION
The fopencookie() function allows the programmer to create a custom implementation for a standard I/O

stream. This implementation can store the stream’s data at a location of its own choosing; for example,

fopencookie() is used to implement fmemopen(3), which provides a stream interface to data that is stored

in a buffer in memory.

In order to create a custom stream the programmer must:

* Implement four "hook" functions that are used internally by the standard I/O library when performing

I/O on the stream.

* Define a "cookie" data type, a structure that provides bookkeeping information (e.g., where to store

data) used by the aforementioned hook functions. The standard I/O package knows nothing about the

contents of this cookie (thus it is typed as void * when passed to fopencookie()), but automatically sup-

plies the cookie as the first argument when calling the hook functions.

* Call fopencookie() to open a new stream and associate the cookie and hook functions with that stream.

The fopencookie() function serves a purpose similar to fopen(3): it opens a new stream and returns a

pointer to a FILE object that is used to operate on that stream.

The cookie argument is a pointer to the caller’s cookie structure that is to be associated with the new

stream. This pointer is supplied as the first argument when the standard I/O library invokes any of the hook

functions described below.

The mode argument serves the same purpose as for fopen(3). The following modes are supported: r, w, a,

r+, w+, and a+. See fopen(3) for details.

The io_funcs argument is a structure that contains four fields pointing to the programmer-defined hook

functions that are used to implement this stream. The structure is defined as follows

typedef struct {

cookie_read_function_t *read;

cookie_write_function_t *write;

cookie_seek_function_t *seek;

cookie_close_function_t *close;

} cookie_io_functions_t;

The four fields are as follows:

cookie_read_function_t *read

This function implements read operations for the stream. When called, it receives three argu-

ments:

ssize_t read(void *cookie, char *buf, size_t size);

The buf and size arguments are, respectively, a buffer into which input data can be placed and the

size of that buffer. As its function result, the read function should return the number of bytes

copied into buf , 0 on end of file, or −1 on error. The read function should update the stream offset

appropriately.

If *read is a null pointer, then reads from the custom stream always return end of file.

Linux 2019-03-06 1



FOPENCOOKIE(3) Linux Programmer’s Manual FOPENCOOKIE(3)

cookie_write_function_t *write

This function implements write operations for the stream. When called, it receives three argu-

ments:

ssize_t write(void *cookie, const char *buf, size_t size);

The buf and size arguments are, respectively, a buffer of data to be output to the stream and the

size of that buffer. As its function result, the write function should return the number of bytes

copied from buf , or 0 on error. (The function must not return a negative value.) The write func-

tion should update the stream offset appropriately.

If *write is a null pointer, then output to the stream is discarded.

cookie_seek_function_t *seek

This function implements seek operations on the stream. When called, it receives three argu-

ments:

int seek(void *cookie, off64_t *offset, int whence);

The *offset argument specifies the new file offset depending on which of the following three values

is supplied in whence:

SEEK_SET

The stream offset should be set *offset bytes from the start of the stream.

SEEK_CUR

*offset should be added to the current stream offset.

SEEK_END

The stream offset should be set to the size of the stream plus *offset.

Before returning, the seek function should update *offset to indicate the new stream offset.

As its function result, the seek function should return 0 on success, and −1 on error.

If *seek is a null pointer, then it is not possible to perform seek operations on the stream.

cookie_close_function_t *close

This function closes the stream. The hook function can do things such as freeing buffers allocated

for the stream. When called, it receives one argument:

int close(void *cookie);

The cookie argument is the cookie that the programmer supplied when calling fopencookie().

As its function result, the close function should return 0 on success, and EOF on error.

If *close is NULL, then no special action is performed when the stream is closed.

RETURN VALUE
On success fopencookie() returns a pointer to the new stream. On error, NULL is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safefopencookie()

CONFORMING TO
This function is a nonstandard GNU extension.

EXAMPLE
The program below implements a custom stream whose functionality is similar (but not identical) to that

available via fmemopen(3). It implements a stream whose data is stored in a memory buffer. The program

writes its command-line arguments to the stream, and then seeks through the stream reading two out of ev-

ery five characters and writing them to standard output. The following shell session demonstrates the use

of the program:

Linux 2019-03-06 2



FOPENCOOKIE(3) Linux Programmer’s Manual FOPENCOOKIE(3)

$ ./a.out 'hello world'

/he/

/ w/

/d/

Reached end of file

Note that a more general version of the program below could be improved to more robustly handle various

error situations (e.g., opening a stream with a cookie that already has an open stream; closing a stream that

has already been closed).

Program source

#define _GNU_SOURCE

#include <sys/types.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#define INIT_BUF_SIZE 4

struct memfile_cookie {

char *buf; /* Dynamically sized buffer for data */

size_t allocated; /* Size of buf */

size_t endpos; /* Number of characters in buf */

off_t offset; /* Current file offset in buf */

};

ssize_t

memfile_write(void *c, const char *buf, size_t size)

{

char *new_buff;

struct memfile_cookie *cookie = c;

/* Buffer too small? Keep doubling size until big enough */

while (size + cookie−>offset > cookie−>allocated) {

new_buff = realloc(cookie−>buf, cookie−>allocated * 2);

if (new_buff == NULL) {

return −1;

} else {

cookie−>allocated *= 2;

cookie−>buf = new_buff;

}

}

memcpy(cookie−>buf + cookie−>offset, buf, size);

cookie−>offset += size;

if (cookie−>offset > cookie−>endpos)

cookie−>endpos = cookie−>offset;

return size;

}

ssize_t

Linux 2019-03-06 3



FOPENCOOKIE(3) Linux Programmer’s Manual FOPENCOOKIE(3)

memfile_read(void *c, char *buf, size_t size)

{

ssize_t xbytes;

struct memfile_cookie *cookie = c;

/* Fetch minimum of bytes requested and bytes available */

xbytes = size;

if (cookie−>offset + size > cookie−>endpos)

xbytes = cookie−>endpos − cookie−>offset;

if (xbytes < 0) /* offset may be past endpos */

xbytes = 0;

memcpy(buf, cookie−>buf + cookie−>offset, xbytes);

cookie−>offset += xbytes;

return xbytes;

}

int

memfile_seek(void *c, off64_t *offset, int whence)

{

off64_t new_offset;

struct memfile_cookie *cookie = c;

if (whence == SEEK_SET)

new_offset = *offset;

else if (whence == SEEK_END)

new_offset = cookie−>endpos + *offset;

else if (whence == SEEK_CUR)

new_offset = cookie−>offset + *offset;

else

return −1;

if (new_offset < 0)

return −1;

cookie−>offset = new_offset;

*offset = new_offset;

return 0;

}

int

memfile_close(void *c)

{

struct memfile_cookie *cookie = c;

free(cookie−>buf);

cookie−>allocated = 0;

cookie−>buf = NULL;

return 0;

}

Linux 2019-03-06 4



FOPENCOOKIE(3) Linux Programmer’s Manual FOPENCOOKIE(3)

int

main(int argc, char *argv[])

{

cookie_io_functions_t memfile_func = {

.read = memfile_read,

.write = memfile_write,

.seek = memfile_seek,

.close = memfile_close

};

FILE *stream;

struct memfile_cookie mycookie;

ssize_t nread;

long p;

int j;

char buf[1000];

/* Set up the cookie before calling fopencookie() */

mycookie.buf = malloc(INIT_BUF_SIZE);

if (mycookie.buf == NULL) {

perror("malloc");

exit(EXIT_FAILURE);

}

mycookie.allocated = INIT_BUF_SIZE;

mycookie.offset = 0;

mycookie.endpos = 0;

stream = fopencookie(&mycookie,"w+", memfile_func);

if (stream == NULL) {

perror("fopencookie");

exit(EXIT_FAILURE);

}

/* Write command−line arguments to our file */

for (j = 1; j < argc; j++)

if (fputs(argv[j], stream) == EOF) {

perror("fputs");

exit(EXIT_FAILURE);

}

/* Read two bytes out of every five, until EOF */

for (p = 0; ; p += 5) {

if (fseek(stream, p, SEEK_SET) == −1) {

perror("fseek");

exit(EXIT_FAILURE);

}

nread = fread(buf, 1, 2, stream);

if (nread == −1) {

perror("fread");

exit(EXIT_FAILURE);

}

Linux 2019-03-06 5



FOPENCOOKIE(3) Linux Programmer’s Manual FOPENCOOKIE(3)

if (nread == 0) {

printf("Reached end of file\n");

break;

}

printf("/%.*s/\n", nread, buf);

}

exit(EXIT_SUCCESS);

}

SEE ALSO
fclose(3), fmemopen(3), fopen(3), fseek(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 6


