
FSYNC(2) Linux Programmer’s Manual FSYNC(2)

NAME
fsync, fdatasync − synchronize a file’s in-core state with storage device

SYNOPSIS
#include <unistd.h>

int fsync(int fd);

int fdatasync(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fsync():
Glibc 2.16 and later:

No feature test macros need be defined
Glibc up to and including 2.15:

_BSD_SOURCE || _XOPEN_SOURCE
|| /* since glibc 2.8: */ _POSIX_C_SOURCE >= 200112L

fdatasync():
_POSIX_C_SOURCE >= 199309L || _XOPEN_SOURCE >= 500

DESCRIPTION
fsync() transfers ("flushes") all modified in-core data of (i.e., modified buffer cache pages for) the file re-
ferred to by the file descriptor fd to the disk device (or other permanent storage device) so that all changed
information can be retrieved even if the system crashes or is rebooted. This includes writing through or
flushing a disk cache if present. The call blocks until the device reports that the transfer has completed.

As well as flushing the file data, fsync() also flushes the metadata information associated with the file (see
inode(7)).

Calling fsync() does not necessarily ensure that the entry in the directory containing the file has also
reached disk. For that an explicit fsync() on a file descriptor for the directory is also needed.

fdatasync() is similar to fsync(), but does not flush modified metadata unless that metadata is needed in or-
der to allow a subsequent data retrieval to be correctly handled. For example, changes to st_atime or
st_mtime (respectively, time of last access and time of last modification; see inode(7)) do not require flush-
ing because they are not necessary for a subsequent data read to be handled correctly. On the other hand, a
change to the file size (st_size, as made by say ftruncate(2)), would require a metadata flush.

The aim of fdatasync() is to reduce disk activity for applications that do not require all metadata to be syn-
chronized with the disk.

RETURN VALUE
On success, these system calls return zero. On error, −1 is returned, and errno is set appropriately.

ERRORS
EBADF

fd is not a valid open file descriptor.

EIO An error occurred during synchronization. This error may relate to data written to some other file
descriptor on the same file. Since Linux 4.13, errors from write-back will be reported to all file
descriptors that might have written the data which triggered the error. Some filesystems (e.g.,
NFS) keep close track of which data came through which file descriptor, and give more precise re-
porting. Other filesystems (e.g., most local filesystems) will report errors to all file descriptors that
were open on the file when the error was recorded.

ENOSPC

Disk space was exhausted while synchronizing.

EROFS, EINVAL

fd is bound to a special file (e.g., a pipe, FIFO, or socket) which does not support synchronization.

Linux 2019-03-06 1

FSYNC(2) Linux Programmer’s Manual FSYNC(2)

ENOSPC, EDQUOT

fd is bound to a file on NFS or another filesystem which does not allocate space at the time of a
write(2) system call, and some previous write failed due to insufficient storage space.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, 4.3BSD.

AV AILABILITY
On POSIX systems on which fdatasync() is available, _POSIX_SYNCHRONIZED_IO is defined in
<unistd.h> to a value greater than 0. (See also sysconf(3).)

NOTES
On some UNIX systems (but not Linux), fd must be a writable file descriptor.

In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so has no performance advantage.

The fsync() implementations in older kernels and lesser used filesystems do not know how to flush disk
caches. In these cases disk caches need to be disabled using hdparm(8) or sdparm(8) to guarantee safe
operation.

SEE ALSO
sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2), sync_file_range(2), fflush(3),
fileno(3), hdparm(8), mount(8)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 2

