GDBUS(1) User Commands GDBUS(1)

NAME
gdbus — Tool for working with D—Bus objects

SYNOPSIS
gdbus introspect [——system | ——session | ——address address] ——dest bus_name
——object—path /path/to/object [——xml] [-—recurse] [-——only—properties]

gdbus monitor [-—system | ——session | ——address address] —dest bus_name
[——object—path /path/to/object]

gdbus call [-—system | ——session | ——address address] ——dest bus_name ——object—path /path/to/object
——method org.project.InterfaceName.MethodName [——timeout seconds] ARG1 ARG2...

gdbus emit [—-—system | ——session | ——address address] ——object—path /path/to/object
——signal org.project.InterfaceName.SignalName [—dest unique_bus_name] ARG1 ARG2...

gdbus wait [-—system | ——session | —address address] ——activate bus_name [——timeout seconds]
bus_name

gdbus help
DESCRIPTION

gdbus is a simple tool for working with D—Bus objects.

COMMANDS
introspect
Prints out interfaces and property values for a remote object. For this to work, the owner of the object
needs to implement the org.freedesktop.DBus.Introspectable interface. If the ——xml option is used, the
returned introspection XML is printed, otherwise a parsed pretty representation is printed. The
——recurse option can be used to introspect children (and their children and so on) and the
——only—properties option can be used to only print the interfaces with properties.

monitor
Monitors one or all objects owned by the owner of bus_name.

call
Invokes a method on a remote object. Each argument to pass to the method must be specified as a
serialized G Variant except that strings do not need explicit quotes. The return values are printed out
as serialized G'Variant values.

emit
Emits a signal. Each argument to include in the signal must be specified as a serialized G Variant
except that strings do not need explicit quotes.

wait
Waits until bus_name is owned by some process on the bus. If the ——activate is specified, that bus
name will be auto—started first. It may be the same as the bus name being waited for, or different.

help
Prints help and exit.

BASH COMPLETION

gdbus ships with a bash completion script to complete commands, destinations, bus names, object paths
and interface/method names.

EXAMPLES
This shows how to introspect an object — note that the value of each
property is displayed:

$ gdbus introspect ——system \

——dest org.freedesktop.NetworkManager \

——object—path /org/freedesktop/NetworkManager/Devices/0
node /org/freedesktop/NetworkManager/Devices/0 {

GIO 1

GDBUS(1) User Commands GDBUS(1)

interface org.freedesktop.DBus.Introspectable {
methods:
Introspect(out s data);
};
interface org.freedesktop.DBus.Properties {
methods:
Get(in s interface,
in s propname,
out v value);
Set(in s interface,
in s propname,
in v value);
GetAll(in s interface,
out a{sv} props);
};
interface org.freedesktop.NetworkManager.Device.Wired {
signals:
PropertiesChanged(a{sv} arg_0);
properties:
readonly b Carrier = false;
readonly u Speed = 0;
readonly s HwAddress = '00:1D:72:88:BE:97";
};
interface org.freedesktop.NetworkManager.Device {
methods:
Disconnect();
signals:
StateChanged(u arg_0,
uarg_1,
u arg_2);
properties:
readonly u DeviceType = 1;
readonly b Managed = true;
readwrite o Ip6Config ='/";
readwrite o Dhcp4Config = '/';
readwrite o Ip4Config ='/";
readonly u State = 2;
readwrite u Ip4Address = 0;
readonly u Capabilities = 3;
readonly s Driver = 'e1000e";
readwrite s Interface = 'eth(’;
readonly s Udi = '/sys/devices/pci0000:00/0000:00:19.0/net/eth0';
};
};
The ——recurse and ——only—properties options can be useful when wanting to inspect all objects owned by
a particular process:

$ gdbus introspect ——system ——dest org.freedesktop.UPower ——object—path / ——recurse ——only—properties
node / {
node /org {
node /org/freedesktop {
node /org/freedesktop/UPower {
interface org.freedesktop.UPower {
properties:

GIO 2

GDBUS(1)

GIO

User Commands

readonly b IsDocked = true;

readonly b LidForceSleep = false;
readonly b LidIsPresent = false;
readonly b LidIsClosed = false;
readonly b OnLowBattery = false;
readonly b OnBattery = false;
readonly b CanHibernate = true;
readonly b CanSuspend = true;
readonly s DaemonVersion ='0.9.10";

1

node /org/freedesktop/UPower/Policy {

1

node /org/freedesktop/UPower/Wakeups {
interface org.freedesktop.UPower.Wakeups {
properties:

}:

readonly b HasCapability = true;

GDBUS(1)

In a similar fashion, the introspect command can be used to learn details about the Notify method:

[.]

interface org.freedesktop.Notifications {
methods:
GetServerlnformation(out s return_name,

out s return_vendor,
out s return_version,
out s return_spec_version);

GetCapabilities(out as return_caps);
CloseNotification(in u id);
Notify(in s app_name,

in
in
in
in
in
in
in

u id,

s icon,

S summary,
s body,

as actions,
a{sv} hints,
1 timeout,

out u return_id);

}:
[...]

With this information, it's easy to use the call command to display a notification

$ gdbus call ——session \
——dest org.freedesktop.Notifications \
——object—path /org/freedesktop/Notifications \
——method org.freedesktop.Notifications.Notify \
my_app_name \
42\
gtk—dialog—info \
"The Summary" \

GDBUS(1) User Commands GDBUS(1)

BUGS

"Here's the body of the notification" \
[\
O
5000
(uint32 12,)

Monitoring all objects on a service:

$ gdbus monitor ——system ——dest org.freedesktop.ConsoleKit

Monitoring signals from all objects owned by org.freedesktop.ConsoleKit

The name org.freedesktop.ConsoleKit is owned by :1.15

/org/freedesktop/ConsoleKit/Session2: org.freedesktop.ConsoleKit.Session.ActiveChanged (false,)
/org/freedesktop/ConsoleKit/Seatl: org.freedesktop.ConsoleKit.Seat.ActiveSessionChanged (",)
/org/freedesktop/ConsoleKit/Session2: org.freedesktop.ConsoleKit.Session. ActiveChanged (true,)
/org/freedesktop/ConsoleKit/Seatl: org.freedesktop.ConsoleKit.Seat.ActiveSessionChanged ('/org/freedesktop/ConsoleKit/Se:

Monitoring a single object on a service:

$ gdbus monitor ——system ——dest org.freedesktop.NetworkManager ——object—path /org/freedesktop/NetworkManager/Acces
Monitoring signals on object /org/freedesktop/NetworkManager/AccessPoint/4141 owned by org.freedesktop.NetworkManag
The name org.freedesktop.NetworkManager is owned by :1.5

/org/freedesktop/NetworkManager/AccessPoint/4141: org.freedesktop.NetworkManager.AccessPoint.PropertiesChanged ({'St
/org/freedesktop/NetworkManager/AccessPoint/4141: org.freedesktop.NetworkManager.AccessPoint.PropertiesChanged ({'St
/org/freedesktop/NetworkManager/AccessPoint/4141: org.freedesktop.NetworkManager.AccessPoint.PropertiesChanged ({'St
/org/freedesktop/NetworkManager/AccessPoint/4141: org.freedesktop.NetworkManager.AccessPoint.PropertiesChanged ({'St

Emitting a signal:

$ gdbus emit ——session ——object—path /foo ——signal org.bar.Foo "['foo’, 'bar', 'baz']"

Emitting a signal to a specific process:

$ gdbus emit ——session ——object—path /bar ——signal org.bar.Bar someString ——dest :1.42

Waiting for a well-known name to be owned on the bus; this will not auto—start the service:

$ gdbus wait ——session org.bar.SomeName

Auto—starting then waiting for a well-known name to be owned on the bus:

$ gdbus wait ——session ——activate org.bar.SomeName

Auto—starting a different service, then waiting for a well-known name to be owned on the bus. This is
useful in situations where SomeName is not directly activatable:

$ gdbus wait ——session ——activate org.bar.PrerequisiteName org.bar.SomeName

Waiting for a well-known name and giving up after 30 seconds. By default, the timeout is disabled; or set
——timeout to O to disable it:

$ gdbus wait ——session ——timeout 30 org.bar.SomeName

Please send bug reports to either the distribution bug tracker or the upstream bug tracker at
https://gitlab.gnome.org/GNOME/glib/issues/new.

SEE ALSO

GIO

dbus-send(1)

