
GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

NAME
getaddrinfo_a, gai_suspend, gai_error, gai_cancel − asynchronous network address and service translation

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <netdb.h>

int getaddrinfo_a(int mode, struct gaicb *list[],

int nitems, struct sigevent *sevp);

int gai_suspend(const struct gaicb * const list[], int nitems,

const struct timespec *timeout);

int gai_error(struct gaicb *req);

int gai_cancel(struct gaicb *req);

Link with −lanl.

DESCRIPTION
The getaddrinfo_a() function performs the same task as getaddrinfo(3), but allows multiple name look-

ups to be performed asynchronously, with optional notification on completion of look-up operations.

The mode argument has one of the following values:

GAI_WAIT

Perform the look-ups synchronously. The call blocks until the look-ups have completed.

GAI_NOWAIT

Perform the look-ups asynchronously. The call returns immediately, and the requests are resolved

in the background. See the discussion of the sevp argument below.

The array list specifies the look-up requests to process. The nitems argument specifies the number of ele-

ments in list. The requested look-up operations are started in parallel. NULL elements in list are ignored.

Each request is described by a gaicb structure, defined as follows:

struct gaicb {

const char *ar_name;

const char *ar_service;

const struct addrinfo *ar_request;

struct addrinfo *ar_result;

};

The elements of this structure correspond to the arguments of getaddrinfo(3). Thus, ar_name corresponds

to the node argument and ar_service to the service argument, identifying an Internet host and a service.

The ar_request element corresponds to the hints argument, specifying the criteria for selecting the returned

socket address structures. Finally, ar_result corresponds to the res argument; you do not need to initialize

this element, it will be automatically set when the request is resolved. The addrinfo structure referenced by

the last two elements is described in getaddrinfo(3).

When mode is specified as GAI_NOWAIT, notifications about resolved requests can be obtained by em-

ploying the sigevent structure pointed to by the sevp argument. For the definition and general details of this

structure, see sigevent(7). The sevp−>sigev_notify field can have the following values:

SIGEV_NONE

Don’t provide any notification.

SIGEV_SIGNAL

When a look-up completes, generate the signal sigev_signo for the process. See sigevent(7) for

general details. The si_code field of the siginfo_t structure will be set to SI_ASYNCNL.

SIGEV_THREAD

When a look-up completes, invoke sigev_notify_function as if it were the start function of a new

thread. See sigevent(7) for details.

GNU 2019-03-06 1

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

For SIGEV_SIGNAL and SIGEV_THREAD, it may be useful to point sevp−>sigev_value.sival_ptr to

list.

The gai_suspend() function suspends execution of the calling thread, waiting for the completion of one or

more requests in the array list. The nitems argument specifies the size of the array list. The call blocks un-

til one of the following occurs:

* One or more of the operations in list completes.

* The call is interrupted by a signal that is caught.

* The time interval specified in timeout elapses. This argument specifies a timeout in seconds plus

nanoseconds (see nanosleep(2) for details of the timespec structure). If timeout is NULL, then the call

blocks indefinitely (until one of the events above occurs).

No explicit indication of which request was completed is given; you must determine which request(s) have

completed by iterating with gai_error() over the list of requests.

The gai_error() function returns the status of the request req: either EAI_INPROGRESS if the request

was not completed yet, 0 if it was handled successfully, or an error code if the request could not be re-

solved.

The gai_cancel() function cancels the request req. If the request has been canceled successfully, the error

status of the request will be set to EAI_CANCELED and normal asynchronous notification will be per-

formed. The request cannot be canceled if it is currently being processed; in that case, it will be handled as

if gai_cancel() has never been called. If req is NULL, an attempt is made to cancel all outstanding requests

that the process has made.

RETURN VALUE
The getaddrinfo_a() function returns 0 if all of the requests have been enqueued successfully, or one of the

following nonzero error codes:

EAI_AGAIN

The resources necessary to enqueue the look-up requests were not available. The application may

check the error status of each request to determine which ones failed.

EAI_MEMORY

Out of memory.

EAI_SYSTEM

mode is invalid.

The gai_suspend() function returns 0 if at least one of the listed requests has been completed. Otherwise,

it returns one of the following nonzero error codes:

EAI_AGAIN

The given timeout expired before any of the requests could be completed.

EAI_ALLDONE

There were no actual requests given to the function.

EAI_INTR

A signal has interrupted the function. Note that this interruption might have been caused by signal

notification of some completed look-up request.

The gai_error() function can return EAI_INPROGRESS for an unfinished look-up request, 0 for a suc-

cessfully completed look-up (as described above), one of the error codes that could be returned by getad-

drinfo(3), or the error code EAI_CANCELED if the request has been canceled explicitly before it could

be finished.

The gai_cancel() function can return one of these values:

EAI_CANCELED

The request has been canceled successfully.

GNU 2019-03-06 2

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

EAI_NOTCANCELED

The request has not been canceled.

EAI_ALLDONE

The request has already completed.

The gai_strerror(3) function translates these error codes to a human readable string, suitable for error re-

porting.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safegetaddrinfo_a(), gai_suspend(),

gai_error(), gai_cancel()

CONFORMING TO
These functions are GNU extensions; they first appeared in glibc in version 2.2.3.

NOTES
The interface of getaddrinfo_a() was modeled after the lio_listio(3) interface.

EXAMPLE
Tw o examples are provided: a simple example that resolves several requests in parallel synchronously, and

a complex example showing some of the asynchronous capabilities.

Synchronous example

The program below simply resolves several hostnames in parallel, giving a speed-up compared to resolving

the hostnames sequentially using getaddrinfo(3). The program might be used like this:

$./a.out ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz

ftp.us.kernel.org: 128.30.2.36

enoent.linuxfoundation.org: Name or service not known

gnu.cz: 87.236.197.13

Here is the program source code

#define _GNU_SOURCE

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int

main(int argc, char *argv[])

{

int i, ret;

struct gaicb *reqs[argc − 1];

char host[NI_MAXHOST];

struct addrinfo *res;

if (argc < 2) {

fprintf(stderr, "Usage: %s HOST...\n", argv[0]);

exit(EXIT_FAILURE);

}

for (i = 0; i < argc − 1; i++) {

reqs[i] = malloc(sizeof(*reqs[0]));

if (reqs[i] == NULL) {

perror("malloc");

GNU 2019-03-06 3

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

exit(EXIT_FAILURE);

}

memset(reqs[i], 0, sizeof(*reqs[0]));

reqs[i]−>ar_name = argv[i + 1];

}

ret = getaddrinfo_a(GAI_WAIT, reqs, argc − 1, NULL);

if (ret != 0) {

fprintf(stderr, "getaddrinfo_a() failed: %s\n",

gai_strerror(ret));

exit(EXIT_FAILURE);

}

for (i = 0; i < argc − 1; i++) {

printf("%s: ", reqs[i]−>ar_name);

ret = gai_error(reqs[i]);

if (ret == 0) {

res = reqs[i]−>ar_result;

ret = getnameinfo(res−>ai_addr, res−>ai_addrlen,

host, sizeof(host),

NULL, 0, NI_NUMERICHOST);

if (ret != 0) {

fprintf(stderr, "getnameinfo() failed: %s\n",

gai_strerror(ret));

exit(EXIT_FAILURE);

}

puts(host);

} else {

puts(gai_strerror(ret));

}

}

exit(EXIT_SUCCESS);

}

Asynchronous example

This example shows a simple interactive getaddrinfo_a() front-end. The notification facility is not demon-

strated.

An example session might look like this:

$./a.out

> a ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz

> c 2

[2] gnu.cz: Request not canceled

> w 0 1

[00] ftp.us.kernel.org: Finished

> l

[00] ftp.us.kernel.org: 216.165.129.139

[01] enoent.linuxfoundation.org: Processing request in progress

[02] gnu.cz: 87.236.197.13

> l

[00] ftp.us.kernel.org: 216.165.129.139

[01] enoent.linuxfoundation.org: Name or service not known

[02] gnu.cz: 87.236.197.13

GNU 2019-03-06 4

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

The program source is as follows:

#define _GNU_SOURCE

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

static struct gaicb **reqs = NULL;

static int nreqs = 0;

static char *

getcmd(void)

{

static char buf[256];

fputs("> ", stdout); fflush(stdout);

if (fgets(buf, sizeof(buf), stdin) == NULL)

return NULL;

if (buf[strlen(buf) − 1] == '\n')

buf[strlen(buf) − 1] = 0;

return buf;

}

/* Add requests for specified hostnames */

static void

add_requests(void)

{

int nreqs_base = nreqs;

char *host;

int ret;

while ((host = strtok(NULL, " "))) {

nreqs++;

reqs = realloc(reqs, nreqs * sizeof(reqs[0]));

reqs[nreqs − 1] = calloc(1, sizeof(*reqs[0]));

reqs[nreqs − 1]−>ar_name = strdup(host);

}

/* Queue nreqs_base..nreqs requests. */

ret = getaddrinfo_a(GAI_NOWAIT, &reqs[nreqs_base],

nreqs − nreqs_base, NULL);

if (ret) {

fprintf(stderr, "getaddrinfo_a() failed: %s\n",

gai_strerror(ret));

exit(EXIT_FAILURE);

}

}

/* Wait until at least one of specified requests completes */

static void

GNU 2019-03-06 5

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

wait_requests(void)

{

char *id;

int i, ret, n;

struct gaicb const **wait_reqs = calloc(nreqs, sizeof(*wait_reqs));

/* NULL elements are ignored by gai_suspend(). */

while ((id = strtok(NULL, " ")) != NULL) {

n = atoi(id);

if (n >= nreqs) {

printf("Bad request number: %s\n", id);

return;

}

wait_reqs[n] = reqs[n];

}

ret = gai_suspend(wait_reqs, nreqs, NULL);

if (ret) {

printf("gai_suspend(): %s\n", gai_strerror(ret));

return;

}

for (i = 0; i < nreqs; i++) {

if (wait_reqs[i] == NULL)

continue;

ret = gai_error(reqs[i]);

if (ret == EAI_INPROGRESS)

continue;

printf("[%02d] %s: %s\n", i, reqs[i]−>ar_name,

ret == 0 ? "Finished" : gai_strerror(ret));

}

}

/* Cancel specified requests */

static void

cancel_requests(void)

{

char *id;

int ret, n;

while ((id = strtok(NULL, " ")) != NULL) {

n = atoi(id);

if (n >= nreqs) {

printf("Bad request number: %s\n", id);

return;

}

ret = gai_cancel(reqs[n]);

printf("[%s] %s: %s\n", id, reqs[atoi(id)]−>ar_name,

GNU 2019-03-06 6

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

gai_strerror(ret));

}

}

/* List all requests */

static void

list_requests(void)

{

int i, ret;

char host[NI_MAXHOST];

struct addrinfo *res;

for (i = 0; i < nreqs; i++) {

printf("[%02d] %s: ", i, reqs[i]−>ar_name);

ret = gai_error(reqs[i]);

if (!ret) {

res = reqs[i]−>ar_result;

ret = getnameinfo(res−>ai_addr, res−>ai_addrlen,

host, sizeof(host),

NULL, 0, NI_NUMERICHOST);

if (ret) {

fprintf(stderr, "getnameinfo() failed: %s\n",

gai_strerror(ret));

exit(EXIT_FAILURE);

}

puts(host);

} else {

puts(gai_strerror(ret));

}

}

}

int

main(int argc, char *argv[])

{

char *cmdline;

char *cmd;

while ((cmdline = getcmd()) != NULL) {

cmd = strtok(cmdline, " ");

if (cmd == NULL) {

list_requests();

} else {

switch (cmd[0]) {

case 'a':

add_requests();

break;

case 'w':

wait_requests();

break;

case 'c':

GNU 2019-03-06 7

GETADDRINFO_A(3) Linux Programmer’s Manual GETADDRINFO_A(3)

cancel_requests();

break;

case 'l':

list_requests();

break;

default:

fprintf(stderr, "Bad command: %c\n", cmd[0]);

break;

}

}

}

exit(EXIT_SUCCESS);

}

SEE ALSO
getaddrinfo(3), inet(3), lio_listio(3), hostname(7), ip(7), sigevent(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

GNU 2019-03-06 8

