
GIT−ANNOTATE(1) Git Manual GIT−ANNOTATE(1)

NAME
git-annotate − Annotate file lines with commit information

SYNOPSIS
git annotate [<options>] <file> [<revision>]

DESCRIPTION
Annotates each line in the given file with information from the commit which introduced the line.

Optionally annotates from a given revision.

The only difference between this command and git-blame(1) is that they use slightly different output

formats, and this command exists only for backward compatibility to support existing scripts, and provide a

more familiar command name for people coming from other SCM systems.

OPTIONS
−b

Show blank SHA−1 for boundary commits. This can also be controlled via the blame.blankboundary

config option.

−−root

Do not treat root commits as boundaries. This can also be controlled via the blame.showRoot config

option.

−−show−stats

Include additional statistics at the end of blame output.

−L <start>,<end>, −L :<funcname>

Annotate only the given line range. May be specified multiple times. Overlapping ranges are allowed.

<start> and <end> are optional. “−L <start>” or “−L <start>,” spans from <start> to end of file. “−L

,<end>” spans from start of file to <end>.

<start> and <end> can take one of these forms:

• number

If <start> or <end> is a number, it specifies an absolute line number (lines count from 1).

• /regex/

This form will use the first line matching the given POSIX regex. If <start> is a regex, it will

search from the end of the previous −L range, if any, otherwise from the start of file. If <start>

is “ˆ/regex/”, it will search from the start of file. If <end> is a regex, it will search starting at

the line given by <start>.

• +offset or −offset

This is only valid for <end> and will specify a number of lines before or after the line given by

<start>.

If “:<funcname>” is given in place of <start> and <end>, it is a regular expression that denotes the

range from the first funcname line that matches <funcname>, up to the next funcname line.

“:<funcname>” searches from the end of the previous −L range, if any, otherwise from the start of file.

“ˆ:<funcname>” searches from the start of file.

−l

Show long rev (Default: off).

−t

Show raw timestamp (Default: off).

Git 2.25.1 02/08/2023 1



GIT−ANNOTATE(1) Git Manual GIT−ANNOTATE(1)

−S <revs−file>

Use revisions from revs−file instead of calling git-rev-list(1).

−−reverse <rev>..<rev>

Walk history forward instead of backward. Instead of showing the revision in which a line appeared,

this shows the last revision in which a line has existed. This requires a range of revision like

START..END where the path to blame exists in START. git blame −−rev erse START is taken as git

blame −−rev erse START..HEAD for convenience.

−p, −−porcelain

Show in a format designed for machine consumption.

−−line−porcelain

Show the porcelain format, but output commit information for each line, not just the first time a

commit is referenced. Implies −−porcelain.

−−incremental

Show the result incrementally in a format designed for machine consumption.

−−encoding=<encoding>

Specifies the encoding used to output author names and commit summaries. Setting it to none makes

blame output unconverted data. For more information see the discussion about encoding in the git-

log(1) manual page.

−−contents <file>

When <rev> is not specified, the command annotates the changes starting backwards from the working

tree copy. This flag makes the command pretend as if the working tree copy has the contents of the

named file (specify − to make the command read from the standard input).

−−date <format>

Specifies the format used to output dates. If −−date is not provided, the value of the blame.date config

variable is used. If the blame.date config variable is also not set, the iso format is used. For supported

values, see the discussion of the −−date option at git-log(1).

−−[no−]progress

Progress status is reported on the standard error stream by default when it is attached to a terminal.

This flag enables progress reporting even if not attached to a terminal. Can’t use −−progress together

with −−porcelain or −−incremental.

−M[<num>]

Detect moved or copied lines within a file. When a commit moves or copies a block of lines (e.g. the

original file has A and then B, and the commit changes it to B and then A), the traditional blame

algorithm notices only half of the movement and typically blames the lines that were moved up (i.e. B)

to the parent and assigns blame to the lines that were moved down (i.e. A) to the child commit. With

this option, both groups of lines are blamed on the parent by running extra passes of inspection.

<num> is optional but it is the lower bound on the number of alphanumeric characters that Git must

detect as moving/copying within a file for it to associate those lines with the parent commit. The

default value is 20.

−C[<num>]

In addition to −M, detect lines moved or copied from other files that were modified in the same

commit. This is useful when you reorganize your program and move code around across files. When

this option is given twice, the command additionally looks for copies from other files in the commit

that creates the file. When this option is given three times, the command additionally looks for copies

from other files in any commit.

<num> is optional but it is the lower bound on the number of alphanumeric characters that Git must

detect as moving/copying between files for it to associate those lines with the parent commit. And the

default value is 40. If there are more than one −C options given, the <num> argument of the last −C

Git 2.25.1 02/08/2023 2



GIT−ANNOTATE(1) Git Manual GIT−ANNOTATE(1)

will take effect.

−−ignore−rev <rev>

Ignore changes made by the revision when assigning blame, as if the change never happened. Lines

that were changed or added by an ignored commit will be blamed on the previous commit that

changed that line or nearby lines. This option may be specified multiple times to ignore more than one

revision. If the blame.markIgnoredLines config option is set, then lines that were changed by an

ignored commit and attributed to another commit will be marked with a ? in the blame output. If the

blame.markUnblamableLines config option is set, then those lines touched by an ignored commit

that we could not attribute to another revision are marked with a *.

−−ignore−revs−file <file>

Ignore revisions listed in file, which must be in the same format as an fsck.skipList. This option may

be repeated, and these files will be processed after any files specified with the blame.ignoreRevsFile

config option. An empty file name, "", will clear the list of revs from previously processed files.

−h

Show help message.

SEE ALSO
git-blame(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 3


