
GIT−FOR−EACH−REF(1) Git Manual GIT−FOR−EACH−REF(1)

NAME
git-for-each-ref − Output information on each ref

SYNOPSIS
git for−each−ref [−−count=<count>] [−−shell|−−perl|−−python|−−tcl]

[(−−sort=<key>)...] [−−format=<format>] [<pattern>...]
[−−points−at=<object>]
(−−merged[=<object>] | −−no−merged[=<object>])
[−−contains[=<object>]] [−−no−contains[=<object>]]

DESCRIPTION
Iterate over all refs that match <pattern> and show them according to the given <format>, after sorting
them according to the given set of <key>. If <count> is given, stop after showing that many refs. The
interpolated values in <format> can optionally be quoted as string literals in the specified host language
allowing their direct evaluation in that language.

OPTIONS
<pattern>...

If one or more patterns are given, only refs are shown that match against at least one pattern, either
using fnmatch(3) or literally, in the latter case matching completely or from the beginning up to a
slash.

−−count=<count>
By default the command shows all refs that match <pattern>. This option makes it stop after showing
that many refs.

−−sort=<key>
A field name to sort on. Prefix − to sort in descending order of the value. When unspecified, refname

is used. You may use the −−sort=<key> option multiple times, in which case the last key becomes the
primary key.

−−format=<format>
A string that interpolates %(fieldname) from a ref being shown and the object it points at. If
fieldname is prefixed with an asterisk (*) and the ref points at a tag object, use the value for the field
in the object which the tag object refers to (instead of the field in the tag object). When unspecified,
<format> defaults to %(objectname) SPC %(objecttype) TAB %(refname). It also interpolates
%% to %, and %xx where xx are hex digits interpolates to character with hex code xx; for example
%00 interpolates to \0 (NUL), %09 to \t (TAB) and %0a to \n (LF).

−−color[=<when>]
Respect any colors specified in the −−format option. The <when> field must be one of always, never,
or auto (if <when> is absent, behave as if always was giv en).

−−shell, −−perl, −−python, −−tcl
If given, strings that substitute %(fieldname) placeholders are quoted as string literals suitable for the
specified host language. This is meant to produce a scriptlet that can directly be ‘eval‘ed.

−−points−at=<object>
Only list refs which points at the given object.

−−merged[=<object>]
Only list refs whose tips are reachable from the specified commit (HEAD if not specified),
incompatible with −−no−merged.

−−no−merged[=<object>]
Only list refs whose tips are not reachable from the specified commit (HEAD if not specified),
incompatible with −−merged.

−−contains[=<object>]
Only list refs which contain the specified commit (HEAD if not specified).

Git 2.25.1 02/08/2023 1

GIT−FOR−EACH−REF(1) Git Manual GIT−FOR−EACH−REF(1)

−−no−contains[=<object>]
Only list refs which don’t contain the specified commit (HEAD if not specified).

−−ignore−case
Sorting and filtering refs are case insensitive.

FIELD NAMES
Various values from structured fields in referenced objects can be used to interpolate into the resulting
output, or as sort keys.

For all objects, the following names can be used:

refname
The name of the ref (the part after $GIT_DIR/). For a non−ambiguous short name of the ref append
:short. The option core.warnAmbiguousRefs is used to select the strict abbreviation mode. If
lstrip=<N> (rstrip=<N>) is appended, strips <N> slash−separated path components from the front
(back) of the refname (e.g. %(refname:lstrip=2) turns refs/tags/foo into foo and
%(refname:rstrip=2) turns refs/tags/foo into refs). If <N> is a negative number, strip as many path
components as necessary from the specified end to leave −<N> path components (e.g.
%(refname:lstrip=−2) turns refs/tags/foo into tags/foo and %(refname:rstrip=−1) turns
refs/tags/foo into refs). When the ref does not have enough components, the result becomes an empty
string if stripping with positive <N>, or it becomes the full refname if stripping with negative <N>.
Neither is an error.

strip can be used as a synonym to lstrip.

objecttype
The type of the object (blob, tree, commit, tag).

objectsize
The size of the object (the same as git cat−file −s reports). Append :disk to get the size, in bytes, that
the object takes up on disk. See the note about on−disk sizes in the CAVEATS section below.

objectname
The object name (aka SHA−1). For a non−ambiguous abbreviation of the object name append :short.
For an abbreviation of the object name with desired length append :short=<length>, where the
minimum length is MINIMUM_ABBREV. The length may be exceeded to ensure unique object
names.

deltabase
This expands to the object name of the delta base for the given object, if it is stored as a delta.
Otherwise it expands to the null object name (all zeroes).

upstream
The name of a local ref which can be considered “upstream” from the displayed ref. Respects :short,
:lstrip and :rstrip in the same way as refname above. Additionally respects :track to show "[ahead
N, behind M]" and :trackshort to show the terse version: ">" (ahead), "<" (behind), "<>" (ahead and
behind), or "=" (in sync). :track also prints "[gone]" whenever unknown upstream ref is encountered.
Append :track,nobracket to show tracking information without brackets (i.e "ahead N, behind M").

For any remote−tracking branch %(upstream), %(upstream:remotename) and
%(upstream:remoteref) refer to the name of the remote and the name of the tracked remote ref,
respectively. In other words, the remote−tracking branch can be updated explicitly and individually by
using the refspec %(upstream:remoteref):%(upstream) to fetch from %(upstream:remotename).

Has no effect if the ref does not have tracking information associated with it. All the options apart
from nobracket are mutually exclusive, but if used together the last option is selected.

push
The name of a local ref which represents the @{push} location for the displayed ref. Respects :short,

Git 2.25.1 02/08/2023 2

GIT−FOR−EACH−REF(1) Git Manual GIT−FOR−EACH−REF(1)

:lstrip, :rstrip, :track, :trackshort, :remotename, and :remoteref options as upstream does.
Produces an empty string if no @{push} ref is configured.

HEAD
* if HEAD matches current ref (the checked out branch), ' ' otherwise.

color
Change output color. Followed by :<colorname>, where color names are described under Values in
the "CONFIGURATION FILE" section of git-config(1). For example, %(color:bold red).

align
Left−, middle−, or right−align the content between %(align:...) and %(end). The "align:" is followed
by width=<width> and position=<position> in any order separated by a comma, where the
<position> is either left, right or middle, default being left and <width> is the total length of the
content with alignment. For brevity, the "width=" and/or "position=" prefixes may be omitted, and bare
<width> and <position> used instead. For instance, %(align:<width>,<position>). If the contents
length is more than the width then no alignment is performed. If used with −−quote ev erything in
between %(align:...) and %(end) is quoted, but if nested then only the topmost level performs quoting.

if
Used as %(if)...%(then)...%(end) or %(if)...%(then)...%(else)...%(end). If there is an atom with value
or string literal after the %(if) then everything after the %(then) is printed, else if the %(else) atom is
used, then everything after %(else) is printed. We ignore space when evaluating the string before
%(then), this is useful when we use the %(HEAD) atom which prints either "*" or " " and we want to
apply the if condition only on the HEAD ref. Append ":equals=<string>" or ":notequals=<string>" to
compare the value between the %(if:...) and %(then) atoms with the given string.

symref
The ref which the given symbolic ref refers to. If not a symbolic ref, nothing is printed. Respects the
:short, :lstrip and :rstrip options in the same way as refname above.

worktreepath
The absolute path to the worktree in which the ref is checked out, if it is checked out in any linked
worktree. Empty string otherwise.

In addition to the above, for commit and tag objects, the header field names (tree, parent, object, type, and
tag) can be used to specify the value in the header field.

For commit and tag objects, the special creatordate and creator fields will correspond to the appropriate
date or name−email−date tuple from the committer or tagger fields depending on the object type. These
are intended for working on a mix of annotated and lightweight tags.

Fields that have name−email−date tuple as its value (author, committer, and tagger) can be suffixed with
name, email, and date to extract the named component.

The complete message in a commit and tag object is contents. Its first line is contents:subject, where
subject is the concatenation of all lines of the commit message up to the first blank line. The next line is
contents:body, where body is all of the lines after the first blank line. The optional GPG signature is
contents:signature. The first N lines of the message is obtained using contents:lines=N. Additionally, the
trailers as interpreted by git-interpret-trailers(1) are obtained as trailers (or by using the historical alias
contents:trailers). Non−trailer lines from the trailer block can be omitted with trailers:only.
Whitespace−continuations can be removed from trailers so that each trailer appears on a line by itself with
its full content with trailers:unfold. Both can be used together as trailers:unfold,only.

For sorting purposes, fields with numeric values sort in numeric order (objectsize, authordate,
committerdate, creatordate, taggerdate). All other fields are used to sort in their byte−value order.

There is also an option to sort by versions, this can be done by using the fieldname version:refname or its

Git 2.25.1 02/08/2023 3

GIT−FOR−EACH−REF(1) Git Manual GIT−FOR−EACH−REF(1)

alias v:refname.

In any case, a field name that refers to a field inapplicable to the object referred by the ref does not cause an
error. It returns an empty string instead.

As a special case for the date−type fields, you may specify a format for the date by adding : followed by
date format name (see the values the −−date option to git-rev-list(1) takes).

Some atoms like %(align) and %(if) always require a matching %(end). We call them "opening atoms" and
sometimes denote them as %($open).

When a scripting language specific quoting is in effect, everything between a top−level opening atom and
its matching %(end) is evaluated according to the semantics of the opening atom and only its result from
the top−level is quoted.

EXAMPLES
An example directly producing formatted text. Show the most recent 3 tagged commits:

#!/bin/sh

git for−each−ref −−count=3 −−sort='−*authordate' \
−−format='From: %(*authorname) %(*authoremail)
Subject: %(*subject)
Date: %(*authordate)
Ref: %(*refname)

%(*body)
' 'refs/tags'

A simple example showing the use of shell eval on the output, demonstrating the use of −−shell. List the
prefixes of all heads:

#!/bin/sh

git for−each−ref −−shell −−format="ref=%(refname)" refs/heads | \
while read entry
do

eval "$entry"
echo ‘dirname $ref‘

done

A bit more elaborate report on tags, demonstrating that the format may be an entire script:

#!/bin/sh

fmt='
r=%(refname)
t=%(*objecttype)
T=${r#refs/tags/}

o=%(*objectname)
n=%(*authorname)
e=%(*authoremail)

Git 2.25.1 02/08/2023 4

GIT−FOR−EACH−REF(1) Git Manual GIT−FOR−EACH−REF(1)

s=%(*subject)
d=%(*authordate)
b=%(*body)

kind=Tag
if test "z$t" = z
then

could be a lightweight tag
t=%(objecttype)
kind="Lightweight tag"
o=%(objectname)
n=%(authorname)
e=%(authoremail)
s=%(subject)
d=%(authordate)
b=%(body)

fi
echo "$kind $T points at a $t object $o"
if test "z$t" = zcommit
then

echo "The commit was authored by $n $e
at $d, and titled

$s

Its message reads as:
"

echo "$b" | sed −e "s/ˆ/ /"
echo

fi
'

eval=‘git for−each−ref −−shell −−format="$fmt" \
−−sort='*objecttype' \
−−sort=−taggerdate \
refs/tags‘

eval "$eval"

An example to show the usage of %(if)...%(then)...%(else)...%(end). This prefixes the current branch with a
star.

git for−each−ref −−format="%(if)%(HEAD)%(then)* %(else) %(end)%(refname:short)" refs/heads/

An example to show the usage of %(if)...%(then)...%(end). This prints the authorname, if present.

git for−each−ref −−format="%(refname)%(if)%(authorname)%(then) Authored by: %(authorname)%(end)"

CAVEATS
Note that the sizes of objects on disk are reported accurately, but care should be taken in drawing
conclusions about which refs or objects are responsible for disk usage. The size of a packed non−delta
object may be much larger than the size of objects which delta against it, but the choice of which object is
the base and which is the delta is arbitrary and is subject to change during a repack.

Git 2.25.1 02/08/2023 5

GIT−FOR−EACH−REF(1) Git Manual GIT−FOR−EACH−REF(1)

Note also that multiple copies of an object may be present in the object database; in this case, it is
undefined which copy’s size or delta base will be reported.

SEE ALSO
git-show-ref(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 6

