
GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

NAME
git-rev-parse − Pick out and massage parameters

SYNOPSIS
git rev−parse [<options>] <args>...

DESCRIPTION
Many Git porcelainish commands take mixture of flags (i.e. parameters that begin with a dash −) and
parameters meant for the underlying git rev−list command they use internally and flags and parameters for
the other commands they use downstream of git rev−list. This command is used to distinguish between
them.

OPTIONS
Operation Modes

Each of these options must appear first on the command line.

−−parseopt
Use git rev−parse in option parsing mode (see PARSEOPT section below).

−−sq−quote
Use git rev−parse in shell quoting mode (see SQ−QUOTE section below). In contrast to the −−sq

option below, this mode does only quoting. Nothing else is done to command input.

Options for −−parseopt

−−keep−dashdash
Only meaningful in −−parseopt mode. Tells the option parser to echo out the first −− met instead of
skipping it.

−−stop−at−non−option
Only meaningful in −−parseopt mode. Lets the option parser stop at the first non−option argument.
This can be used to parse sub−commands that take options themselves.

−−stuck−long
Only meaningful in −−parseopt mode. Output the options in their long form if available, and with
their arguments stuck.

Options for Filtering

−−revs−only
Do not output flags and parameters not meant for git rev−list command.

−−no−revs
Do not output flags and parameters meant for git rev−list command.

−−flags
Do not output non−flag parameters.

−−no−flags
Do not output flag parameters.

Options for Output

−−default <arg>
If there is no parameter given by the user, use <arg> instead.

−−prefix <arg>
Behave as if git rev−parse was inv oked from the <arg> subdirectory of the working tree. Any relative
filenames are resolved as if they are prefixed by <arg> and will be printed in that form.

This can be used to convert arguments to a command run in a subdirectory so that they can still be
used after moving to the top−level of the repository. For example:

prefix=$(git rev−parse −−show−prefix)
cd "$(git rev−parse −−show−toplevel)"

Git 2.25.1 02/08/2023 1

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

rev−parse provides the −− needed for 'set'
eval "set $(git rev−parse −−sq −−prefix "$prefix" −− "$@")"

−−verify
Verify that exactly one parameter is provided, and that it can be turned into a raw 20−byte SHA−1 that
can be used to access the object database. If so, emit it to the standard output; otherwise, error out.

If you want to make sure that the output actually names an object in your object database and/or can
be used as a specific type of object you require, you can add the ˆ{type} peeling operator to the
parameter. For example, git rev−parse "$VARˆ{commit}" will make sure $VAR names an existing
object that is a commit−ish (i.e. a commit, or an annotated tag that points at a commit). To make sure
that $VAR names an existing object of any type, git rev−parse "$VARˆ{object}" can be used.

−q, −−quiet
Only meaningful in −−verify mode. Do not output an error message if the first argument is not a valid
object name; instead exit with non−zero status silently. SHA−1s for valid object names are printed to
stdout on success.

−−sq
Usually the output is made one line per flag and parameter. This option makes output a single line,
properly quoted for consumption by shell. Useful when you expect your parameter to contain
whitespaces and newlines (e.g. when using pickaxe −S with git diff−*). In contrast to the −−sq−quote

option, the command input is still interpreted as usual.

−−short[=length]
Same as −−verify but shortens the object name to a unique prefix with at least length characters. The
minimum length is 4, the default is the effective value of the core.abbrev configuration variable (see
git-config(1)).

−−not
When showing object names, prefix them with ˆ and strip ˆ prefix from the object names that already
have one.

−−abbrev−ref[=(strict|loose)]
A non−ambiguous short name of the objects name. The option core.warnAmbiguousRefs is used to
select the strict abbreviation mode.

−−symbolic
Usually the object names are output in SHA−1 form (with possible ˆ prefix); this option makes them
output in a form as close to the original input as possible.

−−symbolic−full−name
This is similar to −−symbolic, but it omits input that are not refs (i.e. branch or tag names; or more
explicitly disambiguating "heads/master" form, when you want to name the "master" branch when
there is an unfortunately named tag "master"), and show them as full refnames (e.g.
"refs/heads/master").

Options for Objects

−−all
Show all refs found in refs/.

−−branches[=pattern], −−tags[=pattern], −−remotes[=pattern]
Show all branches, tags, or remote−tracking branches, respectively (i.e., refs found in refs/heads,
refs/tags, or refs/remotes, respectively).

If a pattern is given, only refs matching the given shell glob are shown. If the pattern does not contain
a globbing character (?, *, or [), it is turned into a prefix match by appending /*.

−−glob=pattern
Show all refs matching the shell glob pattern pattern. If the pattern does not start with refs/, this is

Git 2.25.1 02/08/2023 2

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

automatically prepended. If the pattern does not contain a globbing character (?, *, or [), it is turned
into a prefix match by appending /*.

−−exclude=<glob−pattern>
Do not include refs matching <glob−pattern> that the next −−all, −−branches, −−tags, −−remotes,
or −−glob would otherwise consider. Repetitions of this option accumulate exclusion patterns up to
the next −−all, −−branches, −−tags, −−remotes, or −−glob option (other options or arguments do not
clear accumulated patterns).

The patterns given should not begin with refs/heads, refs/tags, or refs/remotes when applied to
−−branches, −−tags, or −−remotes, respectively, and they must begin with refs/ when applied to
−−glob or −−all. If a trailing /* is intended, it must be given explicitly.

−−disambiguate=<prefix>
Show every object whose name begins with the given prefix. The <prefix> must be at least 4
hexadecimal digits long to avoid listing each and every object in the repository by mistake.

Options for Files

−−local−env−vars
List the GIT_* environment variables that are local to the repository (e.g. GIT_DIR or
GIT_WORK_TREE, but not GIT_EDITOR). Only the names of the variables are listed, not their
value, even if they are set.

−−git−dir
Show $GIT_DIR if defined. Otherwise show the path to the .git directory. The path shown, when
relative, is relative to the current working directory.

If $GIT_DIR is not defined and the current directory is not detected to lie in a Git repository or work
tree print a message to stderr and exit with nonzero status.

−−absolute−git−dir
Like −−git−dir, but its output is always the canonicalized absolute path.

−−git−common−dir
Show $GIT_COMMON_DIR if defined, else $GIT_DIR.

−−is−inside−git−dir
When the current working directory is below the repository directory print "true", otherwise "false".

−−is−inside−work−tree
When the current working directory is inside the work tree of the repository print "true", otherwise
"false".

−−is−bare−repository
When the repository is bare print "true", otherwise "false".

−−is−shallow−repository
When the repository is shallow print "true", otherwise "false".

−−resolve−git−dir <path>
Check if <path> is a valid repository or a gitfile that points at a valid repository, and print the location
of the repository. If <path> is a gitfile then the resolved path to the real repository is printed.

−−git−path <path>
Resolve "$GIT_DIR/<path>" and takes other path relocation variables such as
$GIT_OBJECT_DIRECTORY, $GIT_INDEX_FILE... into account. For example, if
$GIT_OBJECT_DIRECTORY is set to /foo/bar then "git rev−parse −−git−path objects/abc" returns
/foo/bar/abc.

−−show−cdup
When the command is invoked from a subdirectory, show the path of the top−level directory relative to
the current directory (typically a sequence of "../", or an empty string).

Git 2.25.1 02/08/2023 3

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

−−show−prefix
When the command is invoked from a subdirectory, show the path of the current directory relative to
the top−level directory.

−−show−toplevel
Show the absolute path of the top−level directory of the working tree. If there is no working tree,
report an error.

−−show−superproject−working−tree
Show the absolute path of the root of the superproject’s working tree (if exists) that uses the current
repository as its submodule. Outputs nothing if the current repository is not used as a submodule by
any project.

−−shared−index−path
Show the path to the shared index file in split index mode, or empty if not in split−index mode.

−−show−object−format[=(storage|input|output)]
Show the object format (hash algorithm) used for the repository for storage inside the .git directory,
input, or output. For input, multiple algorithms may be printed, space−separated. If not specified, the
default is "storage".

Other Options

−−since=datestring, −−after=datestring
Parse the date string, and output the corresponding −−max−age= parameter for git rev−list.

−−until=datestring, −−before=datestring
Parse the date string, and output the corresponding −−min−age= parameter for git rev−list.

<args>...
Flags and parameters to be parsed.

SPECIFYING REVISIONS
A revision parameter <rev> typically, but not necessarily, names a commit object. It uses what is called an
extended SHA−1 syntax. Here are various ways to spell object names. The ones listed near the end of this
list name trees and blobs contained in a commit.

Note
This document shows the "raw" syntax as seen by git. The shell and other UIs might require additional quoting to

protect special characters and to avoid word splitting.

<sha1>, e.g. dae86e1950b1277e545cee180551750029cfe735, dae86e

The full SHA−1 object name (40−byte hexadecimal string), or a leading substring that is unique
within the repository. E.g. dae86e1950b1277e545cee180551750029cfe735 and dae86e both name the
same commit object if there is no other object in your repository whose object name starts with
dae86e.

<describeOutput>, e.g. v1.7.4.2−679−g3bee7fb

Output from git describe; i.e. a closest tag, optionally followed by a dash and a number of commits,
followed by a dash, a g, and an abbreviated object name.

<refname>, e.g. master, heads/master, refs/heads/master

A symbolic ref name. E.g. master typically means the commit object referenced by refs/heads/master.
If you happen to have both heads/master and tags/master, you can explicitly say heads/master to tell
Git which one you mean. When ambiguous, a <refname> is disambiguated by taking the first match in
the following rules:

1. If $GIT_DIR/<refname> exists, that is what you mean (this is usually useful only for
HEAD, FETCH_HEAD, ORIG_HEAD, MERGE_HEAD and
CHERRY_PICK_HEAD);

2. otherwise, refs/<refname> if it exists;

Git 2.25.1 02/08/2023 4

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

3. otherwise, refs/tags/<refname> if it exists;

4. otherwise, refs/heads/<refname> if it exists;

5. otherwise, refs/remotes/<refname> if it exists;

6. otherwise, refs/remotes/<refname>/HEAD if it exists.

HEAD names the commit on which you based the changes in the working tree.
FETCH_HEAD records the branch which you fetched from a remote repository with your
last git fetch invocation. ORIG_HEAD is created by commands that move your HEAD in
a drastic way, to record the position of the HEAD before their operation, so that you can
easily change the tip of the branch back to the state before you ran them. MERGE_HEAD

records the commit(s) which you are merging into your branch when you run git merge.
CHERRY_PICK_HEAD records the commit which you are cherry−picking when you run
git cherry−pick.

Note that any of the refs/* cases above may come either from the $GIT_DIR/refs directory
or from the $GIT_DIR/packed−refs file. While the ref name encoding is unspecified,
UTF−8 is preferred as some output processing may assume ref names in UTF−8.

@

@ alone is a shortcut for HEAD.

[<refname>]@{<date>}, e.g. master@{yesterday}, HEAD@{5 minutes ago}

A ref followed by the suffix @ with a date specification enclosed in a brace pair (e.g. {yesterday}, {1

month 2 weeks 3 days 1 hour 1 second ago} or {1979−02−26 18:30:00}) specifies the value of the ref
at a prior point in time. This suffix may only be used immediately following a ref name and the ref
must have an existing log ($GIT_DIR/logs/<ref>). Note that this looks up the state of your local ref at
a giv en time; e.g., what was in your local master branch last week. If you want to look at commits
made during certain times, see −−since and −−until.

<refname>@{<n>}, e.g. master@{1}

A ref followed by the suffix @ with an ordinal specification enclosed in a brace pair (e.g. {1}, {15})
specifies the n−th prior value of that ref. For example master@{1} is the immediate prior value of
master while master@{5} is the 5th prior value of master. This suffix may only be used immediately
following a ref name and the ref must have an existing log ($GIT_DIR/logs/<refname>).

@{<n>}, e.g. @{1}

You can use the @ construct with an empty ref part to get at a reflog entry of the current branch. For
example, if you are on branch blabla then @{1} means the same as blabla@{1}.

@{−<n>}, e.g. @{−1}

The construct @{−<n>} means the <n>th branch/commit checked out before the current one.

[<branchname>]@{upstream}, e.g. master@{upstream}, @{u}

The suffix @{upstream} to a branchname (short form <branchname>@{u}) refers to the branch that
the branch specified by branchname is set to build on top of (configured with branch.<name>.remote

and branch.<name>.merge). A missing branchname defaults to the current one. These suffixes are
also accepted when spelled in uppercase, and they mean the same thing no matter the case.

[<branchname>]@{push}, e.g. master@{push}, @{push}

The suffix @{push} reports the branch "where we would push to" if git push were run while
branchname was checked out (or the current HEAD if no branchname is specified). Since our push
destination is in a remote repository, of course, we report the local tracking branch that corresponds to
that branch (i.e., something in refs/remotes/).

Here’s an example to make it more clear:

$ git config push.default current

Git 2.25.1 02/08/2023 5

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

$ git config remote.pushdefault myfork
$ git switch −c mybranch origin/master

$ git rev−parse −−symbolic−full−name @{upstream}
refs/remotes/origin/master

$ git rev−parse −−symbolic−full−name @{push}
refs/remotes/myfork/mybranch

Note in the example that we set up a triangular workflow, where we pull from one location and push to
another. In a non−triangular workflow, @{push} is the same as @{upstream}, and there is no need for
it.

This suffix is also accepted when spelled in uppercase, and means the same thing no matter the case.

<rev>ˆ[<n>], e.g. HEADˆ, v1.5.1ˆ0

A suffix ˆ to a revision parameter means the first parent of that commit object. ˆ<n> means the <n>th
parent (i.e. <rev>ˆ is equivalent to <rev>ˆ1). As a special rule, <rev>ˆ0 means the commit itself and
is used when <rev> is the object name of a tag object that refers to a commit object.

<rev>˜[<n>], e.g. HEAD˜, master˜3

A suffix ˜ to a revision parameter means the first parent of that commit object. A suffix ˜<n> to a
revision parameter means the commit object that is the <n>th generation ancestor of the named
commit object, following only the first parents. I.e. <rev>˜3 is equivalent to <rev>ˆˆˆ which is
equivalent to <rev>ˆ1ˆ1ˆ1. See below for an illustration of the usage of this form.

<rev>ˆ{<type>}, e.g. v0.99.8ˆ{commit}

A suffix ˆ followed by an object type name enclosed in brace pair means dereference the object at
<rev> recursively until an object of type <type> is found or the object cannot be dereferenced
anymore (in which case, barf). For example, if <rev> is a commit−ish, <rev>ˆ{commit} describes the
corresponding commit object. Similarly, if <rev> is a tree−ish, <rev>ˆ{tree} describes the
corresponding tree object. <rev>ˆ0 is a short−hand for <rev>ˆ{commit}.

<rev>ˆ{object} can be used to make sure <rev> names an object that exists, without requiring <rev>

to be a tag, and without dereferencing <rev>; because a tag is already an object, it does not have to be
dereferenced even once to get to an object.

<rev>ˆ{tag} can be used to ensure that <rev> identifies an existing tag object.

<rev>ˆ{}, e.g. v0.99.8ˆ{}

A suffix ˆ followed by an empty brace pair means the object could be a tag, and dereference the tag
recursively until a non−tag object is found.

<rev>ˆ{/<text>}, e.g. HEADˆ{/fix nasty bug}

A suffix ˆ to a revision parameter, followed by a brace pair that contains a text led by a slash, is the
same as the :/fix nasty bug syntax below except that it returns the youngest matching commit which is
reachable from the <rev> before ˆ.

:/<text>, e.g. :/fix nasty bug

A colon, followed by a slash, followed by a text, names a commit whose commit message matches the
specified regular expression. This name returns the youngest matching commit which is reachable
from any ref, including HEAD. The regular expression can match any part of the commit message. To
match messages starting with a string, one can use e.g. :/ˆfoo. The special sequence :/! is reserved for
modifiers to what is matched. :/!−foo performs a negative match, while :/!!foo matches a literal !

character, followed by foo. Any other sequence beginning with :/! is reserved for now. Depending on
the given text, the shell’s word splitting rules might require additional quoting.

<rev>:<path>, e.g. HEAD:README, master:./README

A suffix : followed by a path names the blob or tree at the given path in the tree−ish object named by

Git 2.25.1 02/08/2023 6

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

the part before the colon. A path starting with ./ or ../ is relative to the current working directory. The
given path will be converted to be relative to the working tree’s root directory. This is most useful to
address a blob or tree from a commit or tree that has the same tree structure as the working tree.

:[<n>:]<path>, e.g. :0:README, :README

A colon, optionally followed by a stage number (0 to 3) and a colon, followed by a path, names a blob
object in the index at the given path. A missing stage number (and the colon that follows it) names a
stage 0 entry. During a merge, stage 1 is the common ancestor, stage 2 is the target branch’s version
(typically the current branch), and stage 3 is the version from the branch which is being merged.

Here is an illustration, by Jon Loeliger. Both commit nodes B and C are parents of commit node A. Parent
commits are ordered left−to−right.

G H I J
\ / \ /
D E F
\ | / \
\ | / |
\|/ |
B C
\ /
\ /
A

A = = Aˆ0
B = Aˆ = Aˆ1 = A˜1
C = Aˆ2 = Aˆ2
D = Aˆˆ = Aˆ1ˆ1 = A˜2
E = Bˆ2 = Aˆˆ2
F = Bˆ3 = Aˆˆ3
G = Aˆˆˆ = Aˆ1ˆ1ˆ1 = A˜3
H = Dˆ2 = Bˆˆ2 = Aˆˆˆ2 = A˜2ˆ2
I = Fˆ = Bˆ3ˆ = Aˆˆ3ˆ
J = Fˆ2 = Bˆ3ˆ2 = Aˆˆ3ˆ2

SPECIFYING RANGES
History traversing commands such as git log operate on a set of commits, not just a single commit.

For these commands, specifying a single revision, using the notation described in the previous section,
means the set of commits reachable from the given commit.

A commit’s reachable set is the commit itself and the commits in its ancestry chain.

Commit Exclusions

ˆ<rev> (caret) Notation
To exclude commits reachable from a commit, a prefix ˆ notation is used. E.g. ˆr1 r2 means commits
reachable from r2 but exclude the ones reachable from r1 (i.e. r1 and its ancestors).

Dotted Range Notations

The .. (two−dot) Range Notation
The ˆr1 r2 set operation appears so often that there is a shorthand for it. When you have two commits
r1 and r2 (named according to the syntax explained in SPECIFYING REVISIONS above), you can
ask for commits that are reachable from r2 excluding those that are reachable from r1 by ˆr1 r2 and it
can be written as r1..r2.

The ... (three−dot) Symmetric Difference Notation
A similar notation r1...r2 is called symmetric difference of r1 and r2 and is defined as r1 r2 −−not

Git 2.25.1 02/08/2023 7

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

$(git merge−base −−all r1 r2). It is the set of commits that are reachable from either one of r1 (left
side) or r2 (right side) but not from both.

In these two shorthand notations, you can omit one end and let it default to HEAD. For example, origin.. is
a shorthand for origin..HEAD and asks "What did I do since I forked from the origin branch?" Similarly,
..origin is a shorthand for HEAD..origin and asks "What did the origin do since I forked from them?" Note
that .. would mean HEAD..HEAD which is an empty range that is both reachable and unreachable from
HEAD.

Other <rev>ˆ Parent Shorthand Notations

Three other shorthands exist, particularly useful for merge commits, for naming a set that is formed by a
commit and its parent commits.

The r1ˆ@ notation means all parents of r1.

The r1ˆ! notation includes commit r1 but excludes all of its parents. By itself, this notation denotes the
single commit r1.

The <rev>ˆ−[<n>] notation includes <rev> but excludes the <n>th parent (i.e. a shorthand for
<rev>ˆ<n>..<rev>), with <n> = 1 if not given. This is typically useful for merge commits where you can
just pass <commit>ˆ− to get all the commits in the branch that was merged in merge commit <commit>

(including <commit> itself).

While <rev>ˆ<n> was about specifying a single commit parent, these three notations also consider its
parents. For example you can say HEADˆ2ˆ@, howev er you cannot say HEADˆ@ˆ2.

REVISION RANGE SUMMARY
<rev>

Include commits that are reachable from <rev> (i.e. <rev> and its ancestors).

ˆ<rev>

Exclude commits that are reachable from <rev> (i.e. <rev> and its ancestors).

<rev1>..<rev2>

Include commits that are reachable from <rev2> but exclude those that are reachable from <rev1>.
When either <rev1> or <rev2> is omitted, it defaults to HEAD.

<rev1>...<rev2>

Include commits that are reachable from either <rev1> or <rev2> but exclude those that are reachable
from both. When either <rev1> or <rev2> is omitted, it defaults to HEAD.

<rev>ˆ@, e.g. HEADˆ@

A suffix ˆ followed by an at sign is the same as listing all parents of <rev> (meaning, include anything
reachable from its parents, but not the commit itself).

<rev>ˆ!, e.g. HEADˆ!

A suffix ˆ followed by an exclamation mark is the same as giving commit <rev> and then all its
parents prefixed with ˆ to exclude them (and their ancestors).

<rev>ˆ−<n>, e.g. HEADˆ−, HEADˆ−2

Equivalent to <rev>ˆ<n>..<rev>, with <n> = 1 if not given.

Here are a handful of examples using the Loeliger illustration above, with each step in the notation’s
expansion and selection carefully spelt out:

Args Expanded arguments Selected commits
D G H D
D F G H I J D F
ˆG D H D

Git 2.25.1 02/08/2023 8

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

ˆD B E I J F B
ˆD B C E I J F B C
C I J F C
B..C = ˆB C C
B...C = B ˆF C G H D E B C
Bˆ− = Bˆ..B

= ˆBˆ1 B E I J F B
Cˆ@ = Cˆ1

= F I J F
Bˆ@ = Bˆ1 Bˆ2 Bˆ3

= D E F D G H E F I J
Cˆ! = C ˆCˆ@

= C ˆCˆ1
= C ˆF C

Bˆ! = B ˆBˆ@
= B ˆBˆ1 ˆBˆ2 ˆBˆ3
= B ˆD ˆE ˆF B

Fˆ! D = F ˆI ˆJ D G H D F

PARSEOPT
In −−parseopt mode, git rev−parse helps massaging options to bring to shell scripts the same facilities C
builtins have. It works as an option normalizer (e.g. splits single switches aggregate values), a bit like
getopt(1) does.

It takes on the standard input the specification of the options to parse and understand, and echoes on the
standard output a string suitable for sh(1) eval to replace the arguments with normalized ones. In case of
error, it outputs usage on the standard error stream, and exits with code 129.

Note: Make sure you quote the result when passing it to ev al. See below for an example.

Input Format

git rev−parse −−parseopt input format is fully text based. It has two parts, separated by a line that contains
only −−. The lines before the separator (should be one or more) are used for the usage. The lines after the
separator describe the options.

Each line of options has this format:

<opt−spec><flags>*<arg−hint>? SP+ help LF

<opt−spec>

its format is the short option character, then the long option name separated by a comma. Both parts
are not required, though at least one is necessary. May not contain any of the <flags> characters.
h,help, dry−run and f are examples of correct <opt−spec>.

<flags>

<flags> are of *, =, ? or !.

• Use = if the option takes an argument.

• Use ? to mean that the option takes an optional argument. You probably want to use the
−−stuck−long mode to be able to unambiguously parse the optional argument.

• Use * to mean that this option should not be listed in the usage generated for the −h argument.
It’s shown for −−help−all as documented in gitcli(7).

• Use ! to not make the corresponding negated long option available.

<arg−hint>

Git 2.25.1 02/08/2023 9

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

<arg−hint>, if specified, is used as a name of the argument in the help output, for options that take
arguments. <arg−hint> is terminated by the first whitespace. It is customary to use a dash to separate
words in a multi−word argument hint.

The remainder of the line, after stripping the spaces, is used as the help associated to the option.

Blank lines are ignored, and lines that don’t match this specification are used as option group headers (start
the line with a space to create such lines on purpose).

Example

OPTS_SPEC="\
some−command [<options>] <args>...

some−command does foo and bar!
−−
h,help show the help

foo some nifty option −−foo
bar= some cool option −−bar with an argument
baz=arg another cool option −−baz with a named argument
qux?path qux may take a path argument but has meaning by itself

An option group Header
C? option C with an optional argument"

eval "$(echo "$OPTS_SPEC" | git rev−parse −−parseopt −− "$@" || echo exit $?)"

Usage text

When "$@" is −h or −−help in the above example, the following usage text would be shown:

usage: some−command [<options>] <args>...

some−command does foo and bar!

−h, −−help show the help
−−foo some nifty option −−foo
−−bar ... some cool option −−bar with an argument
−−baz <arg> another cool option −−baz with a named argument
−−qux[=<path>] qux may take a path argument but has meaning by itself

An option group Header
−C[...] option C with an optional argument

SQ−QUOTE
In −−sq−quote mode, git rev−parse echoes on the standard output a single line suitable for sh(1) eval. This
line is made by normalizing the arguments following −−sq−quote. Nothing other than quoting the
arguments is done.

If you want command input to still be interpreted as usual by git rev−parse before the output is shell
quoted, see the −−sq option.

Example

$ cat >your−git−script.sh <<\EOF
#!/bin/sh
args=$(git rev−parse −−sq−quote "$@") # quote user−supplied arguments

Git 2.25.1 02/08/2023 10

GIT−REV−PARSE(1) Git Manual GIT−REV−PARSE(1)

command="git frotz −n24 $args" # and use it inside a handcrafted
command line

eval "$command"
EOF

$ sh your−git−script.sh "a b'c"

EXAMPLES
• Print the object name of the current commit:

$ git rev−parse −−verify HEAD

• Print the commit object name from the revision in the $REV shell variable:

$ git rev−parse −−verify $REVˆ{commit}

This will error out if $REV is empty or not a valid revision.

• Similar to above:

$ git rev−parse −−default master −−verify $REV

but if $REV is empty, the commit object name from master will be printed.

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 11

