
GIT−RM(1) Git Manual GIT−RM(1)

NAME
git-rm − Remove files from the working tree and from the index

SYNOPSIS
git rm [−f | −−force] [−n] [−r] [−−cached] [−−ignore−unmatch] [−−quiet] [−−] <file>...

DESCRIPTION
Remove files from the index, or from the working tree and the index. git rm will not remove a file from just
your working directory. (There is no option to remove a file only from the working tree and yet keep it in
the index; use /bin/rm if you want to do that.) The files being removed hav e to be identical to the tip of the
branch, and no updates to their contents can be staged in the index, though that default behavior can be
overridden with the −f option. When −−cached is given, the staged content has to match either the tip of
the branch or the file on disk, allowing the file to be removed from just the index.

OPTIONS
<file>...

Files to remove. Fileglobs (e.g. *.c) can be given to remove all matching files. If you want Git to
expand file glob characters, you may need to shell−escape them. A leading directory name (e.g. dir to
remove dir/file1 and dir/file2) can be given to remove all files in the directory, and recursively all
sub−directories, but this requires the −r option to be explicitly given.

−f, −−force
Override the up−to−date check.

−n, −−dry−run
Don’t actually remove any file(s). Instead, just show if they exist in the index and would otherwise be
removed by the command.

−r
Allow recursive removal when a leading directory name is given.

−−
This option can be used to separate command−line options from the list of files, (useful when
filenames might be mistaken for command−line options).

−−cached
Use this option to unstage and remove paths only from the index. Working tree files, whether modified
or not, will be left alone.

−−ignore−unmatch
Exit with a zero status even if no files matched.

−q, −−quiet
git rm normally outputs one line (in the form of an rm command) for each file removed. This option
suppresses that output.

DISCUSSION
The <file> list given to the command can be exact pathnames, file glob patterns, or leading directory names.
The command removes only the paths that are known to Git. Giving the name of a file that you have not
told Git about does not remove that file.

File globbing matches across directory boundaries. Thus, given two directories d and d2, there is a
difference between using git rm 'd*' and git rm 'd/*', as the former will also remove all of directory d2.

REMOVING FILES THAT HAVE DISAPPEARED FROM THE FILESYSTEM
There is no option for git rm to remove from the index only the paths that have disappeared from the
filesystem. However, depending on the use case, there are several ways that can be done.

Using “git commit −a”

If you intend that your next commit should record all modifications of tracked files in the working tree and
record all removals of files that have been removed from the working tree with rm (as opposed to git rm),

Git 2.25.1 02/08/2023 1

GIT−RM(1) Git Manual GIT−RM(1)

use git commit −a, as it will automatically notice and record all removals. You can also have a similar
effect without committing by using git add −u.

Using “git add −A”

When accepting a new code drop for a vendor branch, you probably want to record both the removal of
paths and additions of new paths as well as modifications of existing paths.

Typically you would first remove all tracked files from the working tree using this command:

git ls−files −z | xargs −0 rm −f

and then untar the new code in the working tree. Alternately you could rsync the changes into the working
tree.

After that, the easiest way to record all removals, additions, and modifications in the working tree is:

git add −A

See git-add(1).

Other ways

If all you really want to do is to remove from the index the files that are no longer present in the working
tree (perhaps because your working tree is dirty so that you cannot use git commit −a), use the following
command:

git diff −−name−only −−diff−filter=D −z | xargs −0 git rm −−cached

SUBMODULES
Only submodules using a gitfile (which means they were cloned with a Git version 1.7.8 or newer) will be
removed from the work tree, as their repository lives inside the .git directory of the superproject. If a
submodule (or one of those nested inside it) still uses a .git directory, git rm will move the submodules git
directory into the superprojects git directory to protect the submodule’s history. If it exists the
submodule.<name> section in the gitmodules(5) file will also be removed and that file will be staged
(unless −−cached or −n are used).

A submodule is considered up to date when the HEAD is the same as recorded in the index, no tracked files
are modified and no untracked files that aren’t ignored are present in the submodules work tree. Ignored
files are deemed expendable and won’t stop a submodule’s work tree from being removed.

If you only want to remove the local checkout of a submodule from your work tree without committing the
removal, use git-submodule(1) deinit instead. Also see gitsubmodules(7) for details on submodule
removal.

EXAMPLES
git rm Documentation/*.txt

Removes all *.txt files from the index that are under the Documentation directory and any of its
subdirectories.

Note that the asterisk * is quoted from the shell in this example; this lets Git, and not the shell, expand
the pathnames of files and subdirectories under the Documentation/ directory.

git rm −f git−*.sh

Because this example lets the shell expand the asterisk (i.e. you are listing the files explicitly), it does
not remove subdir/git−foo.sh.

Git 2.25.1 02/08/2023 2

GIT−RM(1) Git Manual GIT−RM(1)

BUGS
Each time a superproject update removes a populated submodule (e.g. when switching between commits
before and after the removal) a stale submodule checkout will remain in the old location. Removing the old
directory is only safe when it uses a gitfile, as otherwise the history of the submodule will be deleted too.
This step will be obsolete when recursive submodule update has been implemented.

SEE ALSO
git-add(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 3

