
GITREVISIONS(7) Git Manual GITREVISIONS(7)

NAME
gitrevisions − Specifying revisions and ranges for Git

SYNOPSIS
gitrevisions

DESCRIPTION
Many Git commands take revision parameters as arguments. Depending on the command, they denote a
specific commit or, for commands which walk the revision graph (such as git-log(1)), all commits which
are reachable from that commit. For commands that walk the revision graph one can also specify a range of
revisions explicitly.

In addition, some Git commands (such as git-show(1) and git-push(1)) can also take revision parameters
which denote other objects than commits, e.g. blobs ("files") or trees ("directories of files").

SPECIFYING REVISIONS
A revision parameter <rev> typically, but not necessarily, names a commit object. It uses what is called an
extended SHA−1 syntax. Here are various ways to spell object names. The ones listed near the end of this
list name trees and blobs contained in a commit.

Note
This document shows the "raw" syntax as seen by git. The shell and other UIs might require additional quoting to

protect special characters and to avoid word splitting.

<sha1>, e.g. dae86e1950b1277e545cee180551750029cfe735, dae86e

The full SHA−1 object name (40−byte hexadecimal string), or a leading substring that is unique
within the repository. E.g. dae86e1950b1277e545cee180551750029cfe735 and dae86e both name the
same commit object if there is no other object in your repository whose object name starts with
dae86e.

<describeOutput>, e.g. v1.7.4.2−679−g3bee7fb

Output from git describe; i.e. a closest tag, optionally followed by a dash and a number of commits,
followed by a dash, a g, and an abbreviated object name.

<refname>, e.g. master, heads/master, refs/heads/master

A symbolic ref name. E.g. master typically means the commit object referenced by refs/heads/master.
If you happen to have both heads/master and tags/master, you can explicitly say heads/master to tell
Git which one you mean. When ambiguous, a <refname> is disambiguated by taking the first match in
the following rules:

1. If $GIT_DIR/<refname> exists, that is what you mean (this is usually useful only for
HEAD, FETCH_HEAD, ORIG_HEAD, MERGE_HEAD and
CHERRY_PICK_HEAD);

2. otherwise, refs/<refname> if it exists;

3. otherwise, refs/tags/<refname> if it exists;

4. otherwise, refs/heads/<refname> if it exists;

5. otherwise, refs/remotes/<refname> if it exists;

6. otherwise, refs/remotes/<refname>/HEAD if it exists.

HEAD names the commit on which you based the changes in the working tree.
FETCH_HEAD records the branch which you fetched from a remote repository with your
last git fetch invocation. ORIG_HEAD is created by commands that move your HEAD in
a drastic way, to record the position of the HEAD before their operation, so that you can
easily change the tip of the branch back to the state before you ran them. MERGE_HEAD

records the commit(s) which you are merging into your branch when you run git merge.
CHERRY_PICK_HEAD records the commit which you are cherry−picking when you run
git cherry−pick.

Git 2.25.1 02/08/2023 1

GITREVISIONS(7) Git Manual GITREVISIONS(7)

Note that any of the refs/* cases above may come either from the $GIT_DIR/refs directory
or from the $GIT_DIR/packed−refs file. While the ref name encoding is unspecified,
UTF−8 is preferred as some output processing may assume ref names in UTF−8.

@

@ alone is a shortcut for HEAD.

[<refname>]@{<date>}, e.g. master@{yesterday}, HEAD@{5 minutes ago}

A ref followed by the suffix @ with a date specification enclosed in a brace pair (e.g. {yesterday}, {1

month 2 weeks 3 days 1 hour 1 second ago} or {1979−02−26 18:30:00}) specifies the value of the ref
at a prior point in time. This suffix may only be used immediately following a ref name and the ref
must have an existing log ($GIT_DIR/logs/<ref>). Note that this looks up the state of your local ref at
a giv en time; e.g., what was in your local master branch last week. If you want to look at commits
made during certain times, see −−since and −−until.

<refname>@{<n>}, e.g. master@{1}

A ref followed by the suffix @ with an ordinal specification enclosed in a brace pair (e.g. {1}, {15})
specifies the n−th prior value of that ref. For example master@{1} is the immediate prior value of
master while master@{5} is the 5th prior value of master. This suffix may only be used immediately
following a ref name and the ref must have an existing log ($GIT_DIR/logs/<refname>).

@{<n>}, e.g. @{1}

You can use the @ construct with an empty ref part to get at a reflog entry of the current branch. For
example, if you are on branch blabla then @{1} means the same as blabla@{1}.

@{−<n>}, e.g. @{−1}

The construct @{−<n>} means the <n>th branch/commit checked out before the current one.

[<branchname>]@{upstream}, e.g. master@{upstream}, @{u}

The suffix @{upstream} to a branchname (short form <branchname>@{u}) refers to the branch that
the branch specified by branchname is set to build on top of (configured with branch.<name>.remote

and branch.<name>.merge). A missing branchname defaults to the current one. These suffixes are
also accepted when spelled in uppercase, and they mean the same thing no matter the case.

[<branchname>]@{push}, e.g. master@{push}, @{push}

The suffix @{push} reports the branch "where we would push to" if git push were run while
branchname was checked out (or the current HEAD if no branchname is specified). Since our push
destination is in a remote repository, of course, we report the local tracking branch that corresponds to
that branch (i.e., something in refs/remotes/).

Here’s an example to make it more clear:

$ git config push.default current
$ git config remote.pushdefault myfork
$ git switch −c mybranch origin/master

$ git rev−parse −−symbolic−full−name @{upstream}
refs/remotes/origin/master

$ git rev−parse −−symbolic−full−name @{push}
refs/remotes/myfork/mybranch

Note in the example that we set up a triangular workflow, where we pull from one location and push to
another. In a non−triangular workflow, @{push} is the same as @{upstream}, and there is no need for
it.

This suffix is also accepted when spelled in uppercase, and means the same thing no matter the case.

<rev>ˆ[<n>], e.g. HEADˆ, v1.5.1ˆ0

Git 2.25.1 02/08/2023 2

GITREVISIONS(7) Git Manual GITREVISIONS(7)

A suffix ˆ to a revision parameter means the first parent of that commit object. ˆ<n> means the <n>th
parent (i.e. <rev>ˆ is equivalent to <rev>ˆ1). As a special rule, <rev>ˆ0 means the commit itself and
is used when <rev> is the object name of a tag object that refers to a commit object.

<rev>˜[<n>], e.g. HEAD˜, master˜3

A suffix ˜ to a revision parameter means the first parent of that commit object. A suffix ˜<n> to a
revision parameter means the commit object that is the <n>th generation ancestor of the named
commit object, following only the first parents. I.e. <rev>˜3 is equivalent to <rev>ˆˆˆ which is
equivalent to <rev>ˆ1ˆ1ˆ1. See below for an illustration of the usage of this form.

<rev>ˆ{<type>}, e.g. v0.99.8ˆ{commit}

A suffix ˆ followed by an object type name enclosed in brace pair means dereference the object at
<rev> recursively until an object of type <type> is found or the object cannot be dereferenced
anymore (in which case, barf). For example, if <rev> is a commit−ish, <rev>ˆ{commit} describes the
corresponding commit object. Similarly, if <rev> is a tree−ish, <rev>ˆ{tree} describes the
corresponding tree object. <rev>ˆ0 is a short−hand for <rev>ˆ{commit}.

<rev>ˆ{object} can be used to make sure <rev> names an object that exists, without requiring <rev>

to be a tag, and without dereferencing <rev>; because a tag is already an object, it does not have to be
dereferenced even once to get to an object.

<rev>ˆ{tag} can be used to ensure that <rev> identifies an existing tag object.

<rev>ˆ{}, e.g. v0.99.8ˆ{}

A suffix ˆ followed by an empty brace pair means the object could be a tag, and dereference the tag
recursively until a non−tag object is found.

<rev>ˆ{/<text>}, e.g. HEADˆ{/fix nasty bug}

A suffix ˆ to a revision parameter, followed by a brace pair that contains a text led by a slash, is the
same as the :/fix nasty bug syntax below except that it returns the youngest matching commit which is
reachable from the <rev> before ˆ.

:/<text>, e.g. :/fix nasty bug

A colon, followed by a slash, followed by a text, names a commit whose commit message matches the
specified regular expression. This name returns the youngest matching commit which is reachable
from any ref, including HEAD. The regular expression can match any part of the commit message. To
match messages starting with a string, one can use e.g. :/ˆfoo. The special sequence :/! is reserved for
modifiers to what is matched. :/!−foo performs a negative match, while :/!!foo matches a literal !

character, followed by foo. Any other sequence beginning with :/! is reserved for now. Depending on
the given text, the shell’s word splitting rules might require additional quoting.

<rev>:<path>, e.g. HEAD:README, master:./README

A suffix : followed by a path names the blob or tree at the given path in the tree−ish object named by
the part before the colon. A path starting with ./ or ../ is relative to the current working directory. The
given path will be converted to be relative to the working tree’s root directory. This is most useful to
address a blob or tree from a commit or tree that has the same tree structure as the working tree.

:[<n>:]<path>, e.g. :0:README, :README

A colon, optionally followed by a stage number (0 to 3) and a colon, followed by a path, names a blob
object in the index at the given path. A missing stage number (and the colon that follows it) names a
stage 0 entry. During a merge, stage 1 is the common ancestor, stage 2 is the target branch’s version
(typically the current branch), and stage 3 is the version from the branch which is being merged.

Here is an illustration, by Jon Loeliger. Both commit nodes B and C are parents of commit node A. Parent
commits are ordered left−to−right.

G H I J
\ / \ /
D E F

Git 2.25.1 02/08/2023 3

GITREVISIONS(7) Git Manual GITREVISIONS(7)

\ | / \
\ | / |
\|/ |
B C
\ /
\ /
A

A = = Aˆ0
B = Aˆ = Aˆ1 = A˜1
C = Aˆ2 = Aˆ2
D = Aˆˆ = Aˆ1ˆ1 = A˜2
E = Bˆ2 = Aˆˆ2
F = Bˆ3 = Aˆˆ3
G = Aˆˆˆ = Aˆ1ˆ1ˆ1 = A˜3
H = Dˆ2 = Bˆˆ2 = Aˆˆˆ2 = A˜2ˆ2
I = Fˆ = Bˆ3ˆ = Aˆˆ3ˆ
J = Fˆ2 = Bˆ3ˆ2 = Aˆˆ3ˆ2

SPECIFYING RANGES
History traversing commands such as git log operate on a set of commits, not just a single commit.

For these commands, specifying a single revision, using the notation described in the previous section,
means the set of commits reachable from the given commit.

A commit’s reachable set is the commit itself and the commits in its ancestry chain.

Commit Exclusions

ˆ<rev> (caret) Notation
To exclude commits reachable from a commit, a prefix ˆ notation is used. E.g. ˆr1 r2 means commits
reachable from r2 but exclude the ones reachable from r1 (i.e. r1 and its ancestors).

Dotted Range Notations

The .. (two−dot) Range Notation
The ˆr1 r2 set operation appears so often that there is a shorthand for it. When you have two commits
r1 and r2 (named according to the syntax explained in SPECIFYING REVISIONS above), you can
ask for commits that are reachable from r2 excluding those that are reachable from r1 by ˆr1 r2 and it
can be written as r1..r2.

The ... (three−dot) Symmetric Difference Notation
A similar notation r1...r2 is called symmetric difference of r1 and r2 and is defined as r1 r2 −−not

$(git merge−base −−all r1 r2). It is the set of commits that are reachable from either one of r1 (left
side) or r2 (right side) but not from both.

In these two shorthand notations, you can omit one end and let it default to HEAD. For example, origin.. is
a shorthand for origin..HEAD and asks "What did I do since I forked from the origin branch?" Similarly,
..origin is a shorthand for HEAD..origin and asks "What did the origin do since I forked from them?" Note
that .. would mean HEAD..HEAD which is an empty range that is both reachable and unreachable from
HEAD.

Other <rev>ˆ Parent Shorthand Notations

Three other shorthands exist, particularly useful for merge commits, for naming a set that is formed by a
commit and its parent commits.

The r1ˆ@ notation means all parents of r1.

The r1ˆ! notation includes commit r1 but excludes all of its parents. By itself, this notation denotes the

Git 2.25.1 02/08/2023 4

GITREVISIONS(7) Git Manual GITREVISIONS(7)

single commit r1.

The <rev>ˆ−[<n>] notation includes <rev> but excludes the <n>th parent (i.e. a shorthand for
<rev>ˆ<n>..<rev>), with <n> = 1 if not given. This is typically useful for merge commits where you can
just pass <commit>ˆ− to get all the commits in the branch that was merged in merge commit <commit>

(including <commit> itself).

While <rev>ˆ<n> was about specifying a single commit parent, these three notations also consider its
parents. For example you can say HEADˆ2ˆ@, howev er you cannot say HEADˆ@ˆ2.

REVISION RANGE SUMMARY
<rev>

Include commits that are reachable from <rev> (i.e. <rev> and its ancestors).

ˆ<rev>

Exclude commits that are reachable from <rev> (i.e. <rev> and its ancestors).

<rev1>..<rev2>

Include commits that are reachable from <rev2> but exclude those that are reachable from <rev1>.
When either <rev1> or <rev2> is omitted, it defaults to HEAD.

<rev1>...<rev2>

Include commits that are reachable from either <rev1> or <rev2> but exclude those that are reachable
from both. When either <rev1> or <rev2> is omitted, it defaults to HEAD.

<rev>ˆ@, e.g. HEADˆ@

A suffix ˆ followed by an at sign is the same as listing all parents of <rev> (meaning, include anything
reachable from its parents, but not the commit itself).

<rev>ˆ!, e.g. HEADˆ!

A suffix ˆ followed by an exclamation mark is the same as giving commit <rev> and then all its
parents prefixed with ˆ to exclude them (and their ancestors).

<rev>ˆ−<n>, e.g. HEADˆ−, HEADˆ−2

Equivalent to <rev>ˆ<n>..<rev>, with <n> = 1 if not given.

Here are a handful of examples using the Loeliger illustration above, with each step in the notation’s
expansion and selection carefully spelt out:

Args Expanded arguments Selected commits
D G H D
D F G H I J D F
ˆG D H D
ˆD B E I J F B
ˆD B C E I J F B C
C I J F C
B..C = ˆB C C
B...C = B ˆF C G H D E B C
Bˆ− = Bˆ..B

= ˆBˆ1 B E I J F B
Cˆ@ = Cˆ1

= F I J F
Bˆ@ = Bˆ1 Bˆ2 Bˆ3

= D E F D G H E F I J
Cˆ! = C ˆCˆ@

= C ˆCˆ1
= C ˆF C

Bˆ! = B ˆBˆ@
= B ˆBˆ1 ˆBˆ2 ˆBˆ3

Git 2.25.1 02/08/2023 5

GITREVISIONS(7) Git Manual GITREVISIONS(7)

= B ˆD ˆE ˆF B
Fˆ! D = F ˆI ˆJ D G H D F

SEE ALSO
git-rev-parse(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 6

