
GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

NAME
gpgsm − CMS encryption and signing tool

SYNOPSIS
gpgsm [−−homedir dir] [−−options file] [options] command [args]

DESCRIPTION
gpgsm is a tool similar to gpg to provide digital encryption and signing services on X.509 certificates and

the CMS protocol. It is mainly used as a backend for S/MIME mail processing. gpgsm includes a full fea-

tured certificate management and complies with all rules defined for the German Sphinx project.

COMMANDS
Commands are not distinguished from options except for the fact that only one command is allowed.

Commands not specific to the function

--version
Print the program version and licensing information. Note that you cannot abbreviate this com-

mand.

--help, -h
Print a usage message summarizing the most useful command-line options. Note that you cannot

abbreviate this command.

--warranty
Print warranty information. Note that you cannot abbreviate this command.

--dump-options
Print a list of all available options and commands. Note that you cannot abbreviate this command.

Commands to select the type of operation

--encrypt
Perform an encryption. The keys the data is encrypted to must be set using the option --recipient.

--decrypt
Perform a decryption; the type of input is automatically determined. It may either be in binary

form or PEM encoded; automatic determination of base-64 encoding is not done.

--sign Create a digital signature. The key used is either the fist one found in the keybox or those set with

the --local-user option.

GnuPG 2.2.19 2019-11-23 1

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--verify
Check a signature file for validity. Depending on the arguments a detached signature may also be

checked.

--server
Run in server mode and wait for commands on the stdin.

--call-dirmngr command [args]

Behave as a Dirmngr client issuing the request command with the optional list of args. The output

of the Dirmngr is printed stdout. Please note that file names given as arguments should have an

absolute file name (i.e. commencing with /) because they are passed verbatim to the Dirmngr and

the working directory of the Dirmngr might not be the same as the one of this client. Currently it

is not possible to pass data via stdin to the Dirmngr. command should not contain spaces.

This is command is required for certain maintaining tasks of the dirmngr where a dirmngr must be

able to call back to gpgsm. See the Dirmngr manual for details.

--call-protect-tool arguments

Certain maintenance operations are done by an external program call gpg-protect-tool; this is usu-

ally not installed in a directory listed in the PATH variable. This command provides a simple

wrapper to access this tool. arguments are passed verbatim to this command; use ‘--help’ to get a

list of supported operations.

How to manage the certificates and keys

--generate-key
--gen-key

This command allows the creation of a certificate signing request or a self-signed certificate. It is

commonly used along with the --output option to save the created CSR or certificate into a file. If

used with the --batch a parameter file is used to create the CSR or certificate and it is further pos-

sible to create non-self-signed certificates.

--list-keys
-k List all available certificates stored in the local key database. Note that the displayed data might

be reformatted for better human readability and illegal characters are replaced by safe substitutes.

--list-secret-keys
-K List all available certificates for which a corresponding a secret key is available.

--list-external-keys pattern

List certificates matching pattern using an external server. This utilizes the dirmngr service.

--list-chain
Same as --list-keys but also prints all keys making up the chain.

GnuPG 2.2.19 2019-11-23 2

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--dump-cert
--dump-keys

List all available certificates stored in the local key database using a format useful mainly for de-

bugging.

--dump-chain
Same as --dump-keys but also prints all keys making up the chain.

--dump-secret-keys
List all available certificates for which a corresponding a secret key is available using a format use-

ful mainly for debugging.

--dump-external-keys pattern

List certificates matching pattern using an external server. This utilizes the dirmngr service. It

uses a format useful mainly for debugging.

--keydb-clear-some-cert-flags
This is a debugging aid to reset certain flags in the key database which are used to cache certain

certificate stati. It is especially useful if a bad CRL or a weird running OCSP responder did acci-

dentally revoke certificate. There is no security issue with this command because gpgsm always

make sure that the validity of a certificate is checked right before it is used.

--delete-keys pattern

Delete the keys matching pattern. Note that there is no command to delete the secret part of the

key directly. In case you need to do this, you should run the command gpgsm --dump-secret-
keys KEYID before you delete the key, copy the string of hex-digits in the ‘‘keygrip’’ line and

delete the file consisting of these hex-digits and the suffix .key from the ‘private-keys-v1.d’ direc-

tory below our GnuPG home directory (usually ‘˜/.gnupg’).

--export [pattern]

Export all certificates stored in the Keybox or those specified by the optional pattern. Those pat-

tern consist of a list of user ids (see: [how-to-specify-a-user-id]). When used along with the --ar-
mor option a few informational lines are prepended before each block. There is one limitation: As

there is no commonly agreed upon way to pack more than one certificate into an ASN.1 structure,

the binary export (i.e. without using armor) works only for the export of one certificate. Thus it is

required to specify a pattern which yields exactly one certificate. Ephemeral certificate are only

exported if all pattern are given as fingerprints or keygrips.

--export-secret-key-p12 key-id

Export the private key and the certificate identified by key-id using the PKCS#12 format. When

used with the --armor option a few informational lines are prepended to the output. Note, that the

PKCS#12 format is not very secure and proper transport security should be used to convey the ex-

ported key. (See: [option --p12-charset].)

--export-secret-key-p8 key-id

--export-secret-key-raw key-id

Export the private key of the certificate identified by key-id with any encryption stripped. The

...-raw command exports in PKCS#1 format; the ...-p8 command exports in PKCS#8 format.

When used with the --armor option a few informational lines are prepended to the output. These

commands are useful to prepare a key for use on a TLS server.

GnuPG 2.2.19 2019-11-23 3

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--import [files]

Import the certificates from the PEM or binary encoded files as well as from signed-only mes-

sages. This command may also be used to import a secret key from a PKCS#12 file.

--learn-card
Read information about the private keys from the smartcard and import the certificates from there.

This command utilizes the gpg-agent and in turn the scdaemon.

--change-passphrase user_id

--passwd user_id

Change the passphrase of the private key belonging to the certificate specified as user_id. Note,

that changing the passphrase/PIN of a smartcard is not yet supported.

OPTIONS
GPGSM features a bunch of options to control the exact behaviour and to change the default configuration.

How to change the configuration

These options are used to change the configuration and are usually found in the option file.

--options file

Reads configuration from file instead of from the default per-user configuration file. The default

configuration file is named ‘gpgsm.conf’ and expected in the ‘.gnupg’ directory directly below the

home directory of the user.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the home directory defaults to

‘˜/.gnupg’. It is only recognized when given on the command line. It also overrides any home di-

rectory stated through the environment variable ‘GNUPGHOME’ or (on Windows systems) by

means of the Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application. In this case only

this command line option is considered, all other ways to set a home directory are ignored.

To install GnuPG as a portable application under Windows, create an empty file named ‘gpg-

conf.ctl’ in the same directory as the tool ‘gpgconf.exe’. The root of the installation is then that di-

rectory; or, if ‘gpgconf.exe’ has been installed directly below a directory named ‘bin’, its parent di-

rectory. You also need to make sure that the following directories exist and are writable:

‘ROOT/home’ for the GnuPG home and ‘ROOT/var/cache/gnupg’ for internal cache files.

-v

--verbose
Outputs additional information while running. You can increase the verbosity by giving several

verbose commands to gpgsm, such as ‘-vv’.

GnuPG 2.2.19 2019-11-23 4

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--policy-file filename

Change the default name of the policy file to filename.

--agent-program file

Specify an agent program to be used for secret key operations. The default value is determined by

running the command gpgconf. Note that the pipe symbol (|) is used for a regression test suite

hack and may thus not be used in the file name.

--dirmngr-program file

Specify a dirmngr program to be used for CRL checks. The default value is ‘/usr/bin/dirmngr’.

--prefer-system-dirmngr
This option is obsolete and ignored.

--disable-dirmngr
Entirely disable the use of the Dirmngr.

--no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been started and its service is required.

This option is mostly useful on machines where the connection to gpg-agent has been redirected to

another machines. If dirmngr is required on the remote machine, it may be started manually using

gpgconf --launch dirmngr.

--no-secmem-warning
Do not print a warning when the so called "secure memory" cannot be used.

--log-file file

When running in server mode, append all logging output to file. Use ‘socket://’ to log to socket.

Certificate related options

--enable-policy-checks
--disable-policy-checks

By default policy checks are enabled. These options may be used to change it.

--enable-crl-checks
--disable-crl-checks

By default the CRL checks are enabled and the DirMngr is used to check for revoked certificates.

The disable option is most useful with an off-line network connection to suppress this check.

--enable-trusted-cert-crl-check
--disable-trusted-cert-crl-check

By default the CRL for trusted root certificates are checked like for any other certificates. This al-

lows a CA to revoke its own certificates voluntary without the need of putting all ever issued cer-

tificates into a CRL. The disable option may be used to switch this extra check off. Due to the

caching done by the Dirmngr, there will not be any noticeable performance gain. Note, that this

also disables possible OCSP checks for trusted root certificates. A more specific way of disabling

this check is by adding the ‘‘relax’’ keyword to the root CA line of the ‘trustlist.txt’

GnuPG 2.2.19 2019-11-23 5

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--force-crl-refresh
Tell the dirmngr to reload the CRL for each request. For better performance, the dirmngr will ac-

tually optimize this by suppressing the loading for short time intervals (e.g. 30 minutes). This op-

tion is useful to make sure that a fresh CRL is available for certificates hold in the keybox. The

suggested way of doing this is by using it along with the option --with-validation for a key listing

command. This option should not be used in a configuration file.

--enable-ocsp
--disable-ocsp

By default OCSP checks are disabled. The enable option may be used to enable OCSP checks via

Dirmngr. If CRL checks are also enabled, CRLs will be used as a fallback if for some reason an

OCSP request will not succeed. Note, that you have to allow OCSP requests in Dirmngr’s config-

uration too (option --allow-ocsp) and configure Dirmngr properly. If you do not do so you will get

the error code ‘Not supported’.

--auto-issuer-key-retrieve
If a required certificate is missing while validating the chain of certificates, try to load that certifi-

cate from an external location. This usually means that Dirmngr is employed to search for the cer-

tificate. Note that this option makes a "web bug" like behavior possible. LDAP server operators

can see which keys you request, so by sending you a message signed by a brand new key (which

you naturally will not have on your local keybox), the operator can tell both your IP address and

the time when you verified the signature.

--validation-model name

This option changes the default validation model. The only possible values are "shell" (which is

the default), "chain" which forces the use of the chain model and "steed" for a new simplified

model. The chain model is also used if an option in the ‘trustlist.txt’ or an attribute of the certifi-

cate requests it. However the standard model (shell) is in that case always tried first.

--ignore-cert-extension oid

Add oid to the list of ignored certificate extensions. The oid is expected to be in dotted decimal

form, like 2.5.29.3. This option may be used more than once. Critical flagged certificate exten-

sions matching one of the OIDs in the list are treated as if they are actually handled and thus the

certificate will not be rejected due to an unknown critical extension. Use this option with care be-

cause extensions are usually flagged as critical for a reason.

Input and Output

--armor
-a Create PEM encoded output. Default is binary output.

--base64
Create Base-64 encoded output; i.e. PEM without the header lines.

--assume-armor
Assume the input data is PEM encoded. Default is to autodetect the encoding but this is may fail.

GnuPG 2.2.19 2019-11-23 6

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--assume-base64
Assume the input data is plain base-64 encoded.

--assume-binary
Assume the input data is binary encoded.

--p12-charset name

gpgsm uses the UTF-8 encoding when encoding passphrases for PKCS#12 files. This option may

be used to force the passphrase to be encoded in the specified encoding name. This is useful if the

application used to import the key uses a different encoding and thus will not be able to import a

file generated by gpgsm. Commonly used values for name are Latin1 and CP850. Note that

gpgsm itself automagically imports any file with a passphrase encoded to the most commonly

used encodings.

--default-key user_id

Use user_id as the standard key for signing. This key is used if no other key has been defined as a

signing key. Note, that the first --local-users option also sets this key if it has not yet been set;

however --default-key always overrides this.

--local-user user_id

-u user_id

Set the user(s) to be used for signing. The default is the first secret key found in the database.

--recipient name

-r Encrypt to the user id name. There are several ways a user id may be given (see: [how-to-specify-

a-user-id]).

--output file

-o file Write output to file. The default is to write it to stdout.

--with-key-data
Displays extra information with the --list-keys commands. Especially a line tagged grp is printed

which tells you the keygrip of a key. This string is for example used as the file name of the secret

key. Implies --with-colons.

--with-validation
When doing a key listing, do a full validation check for each key and print the result. This is usu-

ally a slow operation because it requires a CRL lookup and other operations.

When used along with --import, a validation of the certificate to import is done and only imported

if it succeeds the test. Note that this does not affect an already available certificate in the DB.

This option is therefore useful to simply verify a certificate.

GnuPG 2.2.19 2019-11-23 7

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--with-md5-fingerprint
For standard key listings, also print the MD5 fingerprint of the certificate.

--with-keygrip
Include the keygrip in standard key listings. Note that the keygrip is always listed in --with-colons
mode.

--with-secret
Include info about the presence of a secret key in public key listings done with --with-colons.

How to change how the CMS is created

--include-certs n

Using n of -2 includes all certificate except for the root cert, -1 includes all certs, 0 does not in-

clude any certs, 1 includes only the signers cert and all other positive values include up to n certifi-

cates starting with the signer cert. The default is -2.

--cipher-algo oid

Use the cipher algorithm with the ASN.1 object identifier oid for encryption. For convenience the

strings 3DES, AES and AES256 may be used instead of their OIDs. The default is AES
(2.16.840.1.101.3.4.1.2).

--digest-algo name
Use name as the message digest algorithm. Usually this algorithm is deduced from the respective

signing certificate. This option forces the use of the given algorithm and may lead to severe inter-

operability problems.

Doing things one usually do not want to do

--extra-digest-algo name

Sometimes signatures are broken in that they announce a different digest algorithm than actually

used. gpgsm uses a one-pass data processing model and thus needs to rely on the announced di-

gest algorithms to properly hash the data. As a workaround this option may be used to tell gpgsm
to also hash the data using the algorithm name; this slows processing down a little bit but allows

verification of such broken signatures. If gpgsm prints an error like ‘‘digest algo 8 has not been

enabled’’ you may want to try this option, with ‘SHA256’ for name.

--faked-system-time epoch

This option is only useful for testing; it sets the system time back or forth to epoch which is the

number of seconds elapsed since the year 1970. Alternatively epoch may be given as a full ISO

time string (e.g. "20070924T154812").

--with-ephemeral-keys
Include ephemeral flagged keys in the output of key listings. Note that they are included anyway

if the key specification for a listing is given as fingerprint or keygrip.

GnuPG 2.2.19 2019-11-23 8

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--debug-level level

Select the debug level for investigating problems. level may be a numeric value or by a keyword:

none No debugging at all. A value of less than 1 may be used instead of the keyword.

basic Some basic debug messages. A value between 1 and 2 may be used instead of the key-

word.

advanced
More verbose debug messages. A value between 3 and 5 may be used instead of the key-

word.

expert Even more detailed messages. A value between 6 and 8 may be used instead of the key-

word.

guru All of the debug messages you can get. A value greater than 8 may be used instead of the

keyword. The creation of hash tracing files is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified and may change with newer

releases of this program. They are however carefully selected to best aid in debugging.

--debug flags

This option is only useful for debugging and the behaviour may change at any time without notice;

using --debug-levels is the preferred method to select the debug verbosity. FLAGS are bit en-

coded and may be given in usual C-Syntax. The currently defined bits are:

0 (1) X.509 or OpenPGP protocol related data

1 (2) values of big number integers

2 (4) low lev el crypto operations

5 (32) memory allocation

6 (64) caching

7 (128) show memory statistics

9 (512) write hashed data to files named dbgmd-000*

10 (1024)
trace Assuan protocol

Note, that all flags set using this option may get overridden by --debug-level.

--debug-all
Same as --debug=0xffffffff

--debug-allow-core-dump
Usually gpgsm tries to avoid dumping core by well written code and by disabling core dumps for

security reasons. However, bugs are pretty durable beasts and to squash them it is sometimes use-

ful to have a core dump. This option enables core dumps unless the Bad Thing happened before

the option parsing.

--debug-no-chain-validation
This is actually not a debugging option but only useful as such. It lets gpgsm bypass all certificate

chain validation checks.

GnuPG 2.2.19 2019-11-23 9

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

--debug-ignore-expiration
This is actually not a debugging option but only useful as such. It lets gpgsm ignore all notAfter

dates, this is used by the regression tests.

--passphrase-fd n
Read the passphrase from file descriptor n. Only the first line will be read from file descriptor n. If

you use 0 for n, the passphrase will be read from STDIN. This can only be used if only one

passphrase is supplied.

Note that this passphrase is only used if the option --batch has also been given.

--pinentry-mode mode
Set the pinentry mode to mode. Allowed values for mode are:

default Use the default of the agent, which is ask.

ask Force the use of the Pinentry.

cancel Emulate use of Pinentry’s cancel button.

error Return a Pinentry error (‘‘No Pinentry’’).

loopback
Redirect Pinentry queries to the caller. Note that in contrast to Pinentry the user is not

prompted again if he enters a bad password.

--request-origin origin

Tell gpgsm to assume that the operation ultimately originated at origin. Depending on the origin

certain restrictions are applied and the Pinentry may include an extra note on the origin. Sup-

ported values for origin are: local which is the default, remote to indicate a remote origin or

browser for an operation requested by a web browser.

--no-common-certs-import
Suppress the import of common certificates on keybox creation.

All the long options may also be given in the configuration file after stripping off the two leading dashes.

HOW TO SPECIFY A USER ID
There are different ways to specify a user ID to GnuPG. Some of them are only valid for gpg others are

only good for gpgsm. Here is the entire list of ways to specify a key:

By key Id.
This format is deduced from the length of the string and its content or 0x prefix. The key Id of an

X.509 certificate are the low 64 bits of its SHA-1 fingerprint. The use of key Ids is just a shortcut,

for all automated processing the fingerprint should be used.

When using gpg an exclamation mark (!) may be appended to force using the specified primary or

secondary key and not to try and calculate which primary or secondary key to use.

The last four lines of the example give the key ID in their long form as internally used by the

OpenPGP protocol. You can see the long key ID using the option --with-colons.

234567C4

GnuPG 2.2.19 2019-11-23 10

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

0F34E556E

01347A56A

0xAB123456

234AABBCC34567C4

0F323456784E56EAB

01AB3FED1347A5612

0x234AABBCC34567C4

By fingerprint.
This format is deduced from the length of the string and its content or the 0x prefix. Note, that

only the 20 byte version fingerprint is available with gpgsm (i.e. the SHA-1 hash of the certifi-

cate).

When using gpg an exclamation mark (!) may be appended to force using the specified primary or

secondary key and not to try and calculate which primary or secondary key to use.

The best way to specify a key Id is by using the fingerprint. This avoids any ambiguities in case

that there are duplicated key IDs.

1234343434343434C434343434343434

123434343434343C3434343434343734349A3434

0E12343434343434343434EAB3484343434343434

0xE12343434343434343434EAB3484343434343434

gpgsm also accepts colons between each pair of hexadecimal digits because this is the de-facto standard on

how to present X.509 fingerprints. gpg also allows the use of the space separated SHA-1 fingerprint as

printed by the key listing commands.

By exact match on OpenPGP user ID.
This is denoted by a leading equal sign. It does not make sense for X.509 certificates.

=Heinrich Heine <heinrichh@uni-duesseldorf.de>

By exact match on an email address.
This is indicated by enclosing the email address in the usual way with left and right angles.

<heinrichh@uni-duesseldorf.de>

By partial match on an email address.
This is indicated by prefixing the search string with an @. This uses a substring search but consid-

ers only the mail address (i.e. inside the angle brackets).

@heinrichh

By exact match on the subject’s DN.
This is indicated by a leading slash, directly followed by the RFC-2253 encoded DN of the sub-

ject. Note that you can’t use the string printed by gpgsm --list-keys because that one has been

GnuPG 2.2.19 2019-11-23 11

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

reordered and modified for better readability; use --with-colons to print the raw (but standard es-

caped) RFC-2253 string.

/CN=Heinrich Heine,O=Poets,L=Paris,C=FR

By exact match on the issuer’s DN.
This is indicated by a leading hash mark, directly followed by a slash and then directly followed

by the RFC-2253 encoded DN of the issuer. This should return the Root cert of the issuer. See

note above.

#/CN=Root Cert,O=Poets,L=Paris,C=FR

By exact match on serial number and issuer’s DN.
This is indicated by a hash mark, followed by the hexadecimal representation of the serial number,

then followed by a slash and the RFC-2253 encoded DN of the issuer. See note above.

#4F03/CN=Root Cert,O=Poets,L=Paris,C=FR

By keygrip.
This is indicated by an ampersand followed by the 40 hex digits of a keygrip. gpgsm prints the

keygrip when using the command --dump-cert.

&D75F22C3F86E355877348498CDC92BD21010A480

By substring match.
This is the default mode but applications may want to explicitly indicate this by putting the aster-

isk in front. Match is not case sensitive.

Heine

*Heine

. and + prefixes
These prefixes are reserved for looking up mails anchored at the end and for a word search mode.

They are not yet implemented and using them is undefined.

Please note that we have reused the hash mark identifier which was used in old GnuPG versions to

indicate the so called local-id. It is not anymore used and there should be no conflict when used

with X.509 stuff.

Using the RFC-2253 format of DNs has the drawback that it is not possible to map them back to

the original encoding, however we don’t hav e to do this because our key database stores this en-

coding as meta data.

EXAMPLES
$ gpgsm -er goo@bar.net <plaintext >ciphertext

GnuPG 2.2.19 2019-11-23 12

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

FILES
There are a few configuration files to control certain aspects of gpgsm’s operation. Unless noted, they are

expected in the current home directory (see: [option --homedir]).

gpgsm.conf
This is the standard configuration file read by gpgsm on startup. It may contain any valid long op-

tion; the leading two dashes may not be entered and the option may not be abbreviated. This de-

fault name may be changed on the command line (see: [gpgsm-option --options]). You should

backup this file.

policies.txt
This is a list of allowed CA policies. This file should list the object identifiers of the policies line

by line. Empty lines and lines starting with a hash mark are ignored. Policies missing in this file

and not marked as critical in the certificate will print only a warning; certificates with policies

marked as critical and not listed in this file will fail the signature verification. You should backup

this file.

For example, to allow only the policy 2.289.9.9, the file should look like this:

Allowed policies

2.289.9.9

qualified.txt
This is the list of root certificates used for qualified certificates. They are defined as certificates ca-

pable of creating legally binding signatures in the same way as handwritten signatures are. Com-

ments start with a hash mark and empty lines are ignored. Lines do have a length limit but this is

not a serious limitation as the format of the entries is fixed and checked by gpgsm: A non-com-

ment line starts with optional whitespace, followed by exactly 40 hex characters, white space and a

lowercased 2 letter country code. Additional data delimited with by a white space is current ig-

nored but might late be used for other purposes.

Note that even if a certificate is listed in this file, this does not mean that the certificate is trusted;

in general the certificates listed in this file need to be listed also in ‘trustlist.txt’.

This is a global file an installed in the data directory (e.g. ‘/usr/share/gnupg/qualified.txt’).

GnuPG installs a suitable file with root certificates as used in Germany. As new Root-CA certifi-

cates may be issued over time, these entries may need to be updated; new distributions of this soft-

ware should come with an updated list but it is still the responsibility of the Administrator to check

that this list is correct.

Every time gpgsm uses a certificate for signing or verification this file will be consulted to check

whether the certificate under question has ultimately been issued by one of these CAs. If this is

the case the user will be informed that the verified signature represents a legally binding (‘‘quali-

fied’’) signature. When creating a signature using such a certificate an extra prompt will be issued

to let the user confirm that such a legally binding signature shall really be created.

Because this software has not yet been approved for use with such certificates, appropriate notices

will be shown to indicate this fact.

GnuPG 2.2.19 2019-11-23 13

GPGSM(1) GNU Privacy Guard 2.2 GPGSM(1)

help.txt
This is plain text file with a few help entries used with pinentry as well as a large list of help items

for gpg and gpgsm. The standard file has English help texts; to install localized versions use file-

names like ‘help.LL.txt’ with LL denoting the locale. GnuPG comes with a set of predefined help

files in the data directory (e.g. ‘/usr/share/gnupg/gnupg/help.de.txt’) and allows overriding of any

help item by help files stored in the system configuration directory (e.g. ‘/etc/gnupg/help.de.txt’).

For a reference of the help file’s syntax, please see the installed ‘help.txt’ file.

com-certs.pem
This file is a collection of common certificates used to populated a newly created ‘pubring.kbx’.

An administrator may replace this file with a custom one. The format is a concatenation of PEM

encoded X.509 certificates. This global file is installed in the data directory (e.g.

‘/usr/share/gnupg/com-certs.pem’).

Note that on larger installations, it is useful to put predefined files into the directory ‘/etc/skel/.gnupg/’ so

that newly created users start up with a working configuration. For existing users a small helper script is

provided to create these files (see: [addgnupghome]).

For internal purposes gpgsm creates and maintains a few other files; they all live in the current home direc-

tory (see: [option --homedir]). Only gpgsm may modify these files.

pubring.kbx
This a database file storing the certificates as well as meta information. For debugging purposes

the tool kbxutil may be used to show the internal structure of this file. You should backup this

file.

random_seed
This content of this file is used to maintain the internal state of the random number generator

across invocations. The same file is used by other programs of this software too.

S.gpg-agent
If this file exists gpgsm will first try to connect to this socket for accessing gpg-agent before start-

ing a new gpg-agent instance. Under Windows this socket (which in reality be a plain file de-

scribing a regular TCP listening port) is the standard way of connecting the gpg-agent.

SEE ALSO
gpg2(1), gpg-agent(1)

The full documentation for this tool is maintained as a Texinfo manual. If GnuPG and the info program are

properly installed at your site, the command

info gnupg

should give you access to the complete manual including a menu structure and an index.

GnuPG 2.2.19 2019-11-23 14

