
HWCLOCK(8) System Administration HWCLOCK(8)

NAME
hwclock − time clocks utility

SYNOPSIS
hwclock [function] [option...]

DESCRIPTION
hwclock is an administration tool for the time clocks. It can: display the Hardware Clock time; set the

Hardware Clock to a specified time; set the Hardware Clock from the System Clock; set the System Clock

from the Hardware Clock; compensate for Hardware Clock drift; correct the System Clock timescale; set

the kernel’s timezone, NTP timescale, and epoch (Alpha only); and predict future Hardware Clock values

based on its drift rate.

Since v2.26 important changes were made to the −−hctosys function and the −−directisa option, and a new

option −−update−drift was added. See their respective descriptions below.

FUNCTIONS
The following functions are mutually exclusive, only one can be given at a time. If none is given, the de-

fault is −−show.

−a, −−adjust

Add or subtract time from the Hardware Clock to account for systematic drift since the last time

the clock was set or adjusted. See the discussion below, under The Adjust Function.

−−getepoch

−−setepoch

These functions are for Alpha machines only, and are only available through the Linux kernel RTC

driver.

They are used to read and set the kernel’s Hardware Clock epoch value. Epoch is the number of

years into AD to which a zero year value in the Hardware Clock refers. For example, if the ma-

chine’s BIOS sets the year counter in the Hardware Clock to contain the number of full years since

1952, then the kernel’s Hardware Clock epoch value must be 1952.

The −−setepoch function requires using the −−epoch option to specify the year. For example:

hwclock −−setepoch −−epoch=1952

The RTC driver attempts to guess the correct epoch value, so setting it may not be required.

This epoch value is used whenever hwclock reads or sets the Hardware Clock on an Alpha ma-

chine. For ISA machines the kernel uses the fixed Hardware Clock epoch of 1900.

−−predict

Predict what the Hardware Clock will read in the future based upon the time given by the −−date

option and the information in /etc/adjtime. This is useful, for example, to account for drift when

setting a Hardware Clock wakeup (aka alarm). See rtcwake(8).

Do not use this function if the Hardware Clock is being modified by anything other than the cur-

rent operating system’s hwclock command, such as ’11 minute mode’ or from dual-booting an-

other OS.

−r, −−show

−−get

Read the Hardware Clock and print its time to standard output in the ISO 8601 format. The time

shown is always in local time, even if you keep your Hardware Clock in UTC. See the

−−localtime option.

Showing the Hardware Clock time is the default when no function is specified.

The −−get function also applies drift correction to the time read, based upon the information in

util-linux July 2017 1

HWCLOCK(8) System Administration HWCLOCK(8)

/etc/adjtime. Do not use this function if the Hardware Clock is being modified by anything other

than the current operating system’s hwclock command, such as ’11 minute mode’ or from dual-

booting another OS.

−s, −−hctosys

Set the System Clock from the Hardware Clock. The time read from the Hardware Clock is com-

pensated to account for systematic drift before using it to set the System Clock. See the discussion

below, under The Adjust Function.

The System Clock must be kept in the UTC timescale for date-time applications to work correctly

in conjunction with the timezone configured for the system. If the Hardware Clock is kept in local

time then the time read from it must be shifted to the UTC timescale before using it to set the Sys-

tem Clock. The −−hctosys function does this based upon the information in the /etc/adjtime file

or the command line arguments −−localtime and −−utc. Note: no daylight saving adjustment is

made. See the discussion below, under LOCAL vs UTC.

The kernel also keeps a timezone value, the −−hctosys function sets it to the timezone configured

for the system. The system timezone is configured by the TZ environment variable or the

/etc/localtime file, as tzset(3) would interpret them. The obsolete tz_dsttime field of the kernel’s

timezone value is set to zero. (For details on what this field used to mean, see settimeofday(2).)

When used in a startup script, making the −−hctosys function the first caller of settimeofday(2)

from boot, it will set the NTP ’11 minute mode’ timescale via the persistent_clock_is_local kernel

variable. If the Hardware Clock’s timescale configuration is changed then a reboot is required to

inform the kernel. See the discussion below, under Automatic Hardware Clock Synchroniza-

tion by the Kernel.

This is a good function to use in one of the system startup scripts before the file systems are

mounted read/write.

This function should never be used on a running system. Jumping system time will cause prob-

lems, such as corrupted filesystem timestamps. Also, if something has changed the Hardware

Clock, like NTP’s ’11 minute mode’, then −−hctosys will set the time incorrectly by including

drift compensation.

Drift compensation can be inhibited by setting the drift factor in /etc/adjtime to zero. This setting

will be persistent as long as the −−update−drift option is not used with −−systohc at shutdown

(or anywhere else). Another way to inhibit this is by using the −−noadjfile option when calling

the −−hctosys function. A third method is to delete the /etc/adjtime file. Hwclock will then de-

fault to using the UTC timescale for the Hardware Clock. If the Hardware Clock is ticking local

time it will need to be defined in the file. This can be done by calling hwclock −−localtime −−ad-

just; when the file is not present this command will not actually adjust the Clock, but it will create

the file with local time configured, and a drift factor of zero.

A condition under which inhibiting hwclock’s drift correction may be desired is when dual-boot-

ing multiple operating systems. If while this instance of Linux is stopped, another OS changes the

Hardware Clock’s value, then when this instance is started again the drift correction applied will

be incorrect.

For hwclock’s drift correction to work properly it is imperative that nothing changes the Hardware

Clock while its Linux instance is not running.

−−set Set the Hardware Clock to the time given by the −−date option, and update the timestamps in

/etc/adjtime. With the −−update-drift option also (re)calculate the drift factor. Try it without the

option if −−set fails. See −−update-drift below.

util-linux July 2017 2

HWCLOCK(8) System Administration HWCLOCK(8)

−−systz

This is an alternate to the −−hctosys function that does not read the Hardware Clock nor set the

System Clock; consequently there is not any drift correction. It is intended to be used in a startup

script on systems with kernels above version 2.6 where you know the System Clock has been set

from the Hardware Clock by the kernel during boot.

It does the following things that are detailed above in the −−hctosys function:

• Corrects the System Clock timescale to UTC as needed. Only instead of accomplishing this by

setting the System Clock, hwclock simply informs the kernel and it handles the change.

• Sets the kernel’s NTP ’11 minute mode’ timescale.

• Sets the kernel’s timezone.

The first two are only available on the first call of settimeofday(2) after boot. Consequently this

option only makes sense when used in a startup script. If the Hardware Clocks timescale configu-

ration is changed then a reboot would be required to inform the kernel.

−w, −−systohc

Set the Hardware Clock from the System Clock, and update the timestamps in /etc/adjtime. With

the −−update-drift option also (re)calculate the drift factor. Try it without the option if

−−systohc fails. See −−update-drift below.

−V, −−version

Display version information and exit.

−h, −−help

Display help text and exit.

OPTIONS
−−adjfile= filename

Override the default /etc/adjtime file path.

−−date=date_string

This option must be used with the −−set or −−predict functions, otherwise it is ignored.

hwclock −−set −−date=’16:45’

hwclock −−predict −−date=’2525-08-14 07:11:05’

The argument must be in local time, even if you keep your Hardware Clock in UTC. See the

−−localtime option. Therefore, the argument should not include any timezone information. It

also should not be a relative time like "+5 minutes", because hwclock’s precision depends upon

correlation between the argument’s value and when the enter key is pressed. Fractional seconds

are silently dropped. This option is capable of understanding many time and date formats, but the

previous parameters should be observed.

−−delay=seconds

This option allows to overwrite internally used delay when set clock time. The default is 0.5

(500ms) for rtc_cmos, for another RTC types the delay is 0. If RTC type is impossible to deter-

mine (from sysfs) then it defaults also to 0.5 to be backwardly compatible.

The 500ms default is based on commonly used MC146818A-compatible (x86) hardware clock.

This Hardware Clock can only be set to any integer time plus one half second. The integer time is

required because there is no interface to set or get a fractional second. The additional half second

delay is because the Hardware Clock updates to the following second precisely 500 ms after set-

ting the new time. Unfortunately, this behavior is hardware specific and in same cases another de-

lay is required.

−D, −−debug

Use −−verbose. The −−debug option has been deprecated and may be repurposed or removed in

a future release.

util-linux July 2017 3

HWCLOCK(8) System Administration HWCLOCK(8)

−−directisa

This option is meaningful for ISA compatible machines in the x86 and x86_64 family. For other

machines, it has no effect. This option tells hwclock to use explicit I/O instructions to access the

Hardware Clock. Without this option, hwclock will use the rtc device file, which it assumes to be

driven by the Linux RTC device driver. As of v2.26 it will no longer automatically use directisa

when the rtc driver is unavailable; this was causing an unsafe condition that could allow two pro-

cesses to access the Hardware Clock at the same time. Direct hardware access from userspace

should only be used for testing, troubleshooting, and as a last resort when all other methods fail.

See the −−rtc option.

−−epoch=year

This option is required when using the −−setepoch function. The minimum year value is 1900.

The maximum is system dependent (ULONG_MAX - 1).

−f, −−rtc=filename

Override hwclock’s default rtc device file name. Otherwise it will use the first one found in this

order:

/dev/rtc0

/dev/rtc

/dev/misc/rtc

For IA-64:

/dev/efirtc

/dev/misc/efirtc

−l, −−localtime

−u, −−utc

Indicate which timescale the Hardware Clock is set to.

The Hardware Clock may be configured to use either the UTC or the local timescale, but nothing

in the clock itself says which alternative is being used. The −−localtime or −−utc options give

this information to the hwclock command. If you specify the wrong one (or specify neither and

take a wrong default), both setting and reading the Hardware Clock will be incorrect.

If you specify neither −−utc nor −−localtime then the one last given with a set function (−−set,

−−systohc, or −−adjust), as recorded in /etc/adjtime, will be used. If the adjtime file doesn’t ex-

ist, the default is UTC.

Note: daylight saving time changes may be inconsistent when the Hardware Clock is kept in local

time. See the discussion below, under LOCAL vs UTC.

−−noadjfile

Disable the facilities provided by /etc/adjtime. hwclock will not read nor write to that file with

this option. Either −−utc or −−localtime must be specified when using this option.

−−test Do not actually change anything on the system, that is, the Clocks or /etc/adjtime (−−verbose is

implicit with this option).

−−update−drift

Update the Hardware Clock’s drift factor in /etc/adjtime. It can only be used with −−set or

−−systohc,

A minimum four hour period between settings is required. This is to avoid invalid calculations.

The longer the period, the more precise the resulting drift factor will be.

This option was added in v2.26, because it is typical for systems to call hwclock −−systohc at

shutdown; with the old behaviour this would automatically (re)calculate the drift factor which

caused several problems:

util-linux July 2017 4

HWCLOCK(8) System Administration HWCLOCK(8)

• When using NTP with an ’11 minute mode’ kernel the drift factor would be clobbered to near

zero.

• It would not allow the use of ’cold’ drift correction. With most configurations using ’cold’ drift

will yield favorable results. Cold, means when the machine is turned off which can have a sig-

nificant impact on the drift factor.

• (Re)calculating drift factor on every shutdown delivers suboptimal results. For example, if

ephemeral conditions cause the machine to be abnormally hot the drift factor calculation would

be out of range.

• Significantly increased system shutdown times (as of v2.31 when not using −−update−drift the

RTC is not read).

Having hwclock calculate the drift factor is a good starting point, but for optimal results it will

likely need to be adjusted by directly editing the /etc/adjtime file. For most configurations once a

machine’s optimal drift factor is crafted it should not need to be changed. Therefore, the old be-

havior to automatically (re)calculate drift was changed and now requires this option to be used.

See the discussion below, under The Adjust Function.

This option requires reading the Hardware Clock before setting it. If it cannot be read, then this

option will cause the set functions to fail. This can happen, for example, if the Hardware Clock is

corrupted by a power failure. In that case, the clock must first be set without this option. Despite

it not working, the resulting drift correction factor would be invalid anyway.

−v, −−verbose

Display more details about what hwclock is doing internally.

NOTES
Clocks in a Linux System

There are two types of date-time clocks:

The Hardware Clock: This clock is an independent hardware device, with its own power domain (battery,

capacitor, etc), that operates when the machine is powered off, or even unplugged.

On an ISA compatible system, this clock is specified as part of the ISA standard. A control program can

read or set this clock only to a whole second, but it can also detect the edges of the 1 second clock ticks, so

the clock actually has virtually infinite precision.

This clock is commonly called the hardware clock, the real time clock, the RTC, the BIOS clock, and the

CMOS clock. Hardware Clock, in its capitalized form, was coined for use by hwclock. The Linux kernel

also refers to it as the persistent clock.

Some non-ISA systems have a few real time clocks with only one of them having its own power domain. A

very low power external I2C or SPI clock chip might be used with a backup battery as the hardware clock

to initialize a more functional integrated real-time clock which is used for most other purposes.

The System Clock: This clock is part of the Linux kernel and is driven by a timer interrupt. (On an ISA

machine, the timer interrupt is part of the ISA standard.) It has meaning only while Linux is running on the

machine. The System Time is the number of seconds since 00:00:00 January 1, 1970 UTC (or more suc-

cinctly, the number of seconds since 1969 UTC). The System Time is not an integer, though. It has virtu-

ally infinite precision.

The System Time is the time that matters. The Hardware Clock’s basic purpose is to keep time when Linux

is not running so that the System Clock can be initialized from it at boot. Note that in DOS, for which ISA

was designed, the Hardware Clock is the only real time clock.

It is important that the System Time not have any discontinuities such as would happen if you used the

date(1) program to set it while the system is running. You can, however, do whatever you want to the

Hardware Clock while the system is running, and the next time Linux starts up, it will do so with the ad-

justed time from the Hardware Clock. Note: currently this is not possible on most systems because

hwclock −−systohc is called at shutdown.

util-linux July 2017 5

HWCLOCK(8) System Administration HWCLOCK(8)

The Linux kernel’s timezone is set by hwclock. But don’t be misled -- almost nobody cares what timezone

the kernel thinks it is in. Instead, programs that care about the timezone (perhaps because they want to dis-

play a local time for you) almost always use a more traditional method of determining the timezone: They

use the TZ environment variable or the /etc/localtime file, as explained in the man page for tzset(3). How-

ev er, some programs and fringe parts of the Linux kernel such as filesystems use the kernel’s timezone

value. An example is the vfat filesystem. If the kernel timezone value is wrong, the vfat filesystem will re-

port and set the wrong timestamps on files. Another example is the kernel’s NTP ’11 minute mode’. If the

kernel’s timezone value and/or the persistent_clock_is_local variable are wrong, then the Hardware Clock

will be set incorrectly by ’11 minute mode’. See the discussion below, under Automatic Hardware Clock

Synchronization by the Kernel.

hwclock sets the kernel’s timezone to the value indicated by TZ or /etc/localtime with the −−hctosys or

−−systz functions.

The kernel’s timezone value actually consists of two parts: 1) a field tz_minuteswest indicating how many

minutes local time (not adjusted for DST) lags behind UTC, and 2) a field tz_dsttime indicating the type of

Daylight Savings Time (DST) convention that is in effect in the locality at the present time. This second

field is not used under Linux and is always zero. See also settimeofday(2).

Hardware Clock Access Methods

hwclock uses many different ways to get and set Hardware Clock values. The most normal way is to do

I/O to the rtc device special file, which is presumed to be driven by the rtc device driver. Also, Linux sys-

tems using the rtc framework with udev, are capable of supporting multiple Hardware Clocks. This may

bring about the need to override the default rtc device by specifying one with the −−rtc option.

However, this method is not always available as older systems do not have an rtc driver. On these systems,

the method of accessing the Hardware Clock depends on the system hardware.

On an ISA compatible system, hwclock can directly access the "CMOS memory" registers that constitute

the clock, by doing I/O to Ports 0x70 and 0x71. It does this with actual I/O instructions and consequently

can only do it if running with superuser effective userid. This method may be used by specifying the

−−directisa option.

This is a really poor method of accessing the clock, for all the reasons that userspace programs are gener-

ally not supposed to do direct I/O and disable interrupts. hwclock provides it for testing, troubleshooting,

and because it may be the only method available on ISA systems which do not have a working rtc device

driver.

The Adjust Function

The Hardware Clock is usually not very accurate. However, much of its inaccuracy is completely predict-

able - it gains or loses the same amount of time every day. This is called systematic drift. hwclock’s

−−adjust function lets you apply systematic drift corrections to the Hardware Clock.

It works like this: hwclock keeps a file, /etc/adjtime, that keeps some historical information. This is called

the adjtime file.

Suppose you start with no adjtime file. You issue a hwclock −−set command to set the Hardware Clock to

the true current time. hwclock creates the adjtime file and records in it the current time as the last time the

clock was calibrated. Five days later, the clock has gained 10 seconds, so you issue a

hwclock −−set −−update−drift command to set it back 10 seconds. hwclock updates the adjtime file to

show the current time as the last time the clock was calibrated, and records 2 seconds per day as the sys-

tematic drift rate. 24 hours go by, and then you issue a hwclock −−adjust command. hwclock consults the

adjtime file and sees that the clock gains 2 seconds per day when left alone and that it has been left alone

for exactly one day. So it subtracts 2 seconds from the Hardware Clock. It then records the current time as

the last time the clock was adjusted. Another 24 hours go by and you issue another hwclock −−adjust.

hwclock does the same thing: subtracts 2 seconds and updates the adjtime file with the current time as the

last time the clock was adjusted.

When you use the −−update−drift option with −−set or −−systohc, the systematic drift rate is (re)calcu-

lated by comparing the fully drift corrected current Hardware Clock time with the new set time, from that it

util-linux July 2017 6

HWCLOCK(8) System Administration HWCLOCK(8)

derives the 24 hour drift rate based on the last calibrated timestamp from the adjtime file. This updated

drift factor is then saved in /etc/adjtime.

A small amount of error creeps in when the Hardware Clock is set, so −−adjust refrains from making any

adjustment that is less than 1 second. Later on, when you request an adjustment again, the accumulated

drift will be more than 1 second and −−adjust will make the adjustment including any fractional amount.

hwclock −−hctosys also uses the adjtime file data to compensate the value read from the Hardware Clock

before using it to set the System Clock. It does not share the 1 second limitation of −−adjust, and will cor-

rect sub-second drift values immediately. It does not change the Hardware Clock time nor the adjtime file.

This may eliminate the need to use −−adjust, unless something else on the system needs the Hardware

Clock to be compensated.

The Adjtime File

While named for its historical purpose of controlling adjustments only, it actually contains other informa-

tion used by hwclock from one invocation to the next.

The format of the adjtime file is, in ASCII:

Line 1: Three numbers, separated by blanks: 1) the systematic drift rate in seconds per day, floating point

decimal; 2) the resulting number of seconds since 1969 UTC of most recent adjustment or calibration, deci-

mal integer; 3) zero (for compatibility with clock(8)) as a decimal integer.

Line 2: One number: the resulting number of seconds since 1969 UTC of most recent calibration. Zero if

there has been no calibration yet or it is known that any previous calibration is moot (for example, because

the Hardware Clock has been found, since that calibration, not to contain a valid time). This is a decimal

integer.

Line 3: "UTC" or "LOCAL". Tells whether the Hardware Clock is set to Coordinated Universal Time or

local time. You can always override this value with options on the hwclock command line.

You can use an adjtime file that was previously used with the clock(8) program with hwclock.

Automatic Hardware Clock Synchronization by the Kernel

You should be aware of another way that the Hardware Clock is kept synchronized in some systems. The

Linux kernel has a mode wherein it copies the System Time to the Hardware Clock every 11 minutes. This

mode is a compile time option, so not all kernels will have this capability. This is a good mode to use when

you are using something sophisticated like NTP to keep your System Clock synchronized. (NTP is a way to

keep your System Time synchronized either to a time server somewhere on the network or to a radio clock

hooked up to your system. See RFC 1305.)

If the kernel is compiled with the ’11 minute mode’ option it will be active when the kernel’s clock disci-

pline is in a synchronized state. When in this state, bit 6 (the bit that is set in the mask 0x0040) of the ker-

nel’s time_status variable is unset. This value is output as the ’status’ line of the adjtimex --print or

ntptime commands.

It takes an outside influence, like the NTP daemon to put the kernel’s clock discipline into a synchronized

state, and therefore turn on ’11 minute mode’. It can be turned off by running anything that sets the System

Clock the old fashioned way, including hwclock −−hctosys. Howev er, if the NTP daemon is still running,

it will turn ’11 minute mode’ back on again the next time it synchronizes the System Clock.

If your system runs with ’11 minute mode’ on, it may need to use either −−hctosys or −−systz in a startup

script, especially if the Hardware Clock is configured to use the local timescale. Unless the kernel is in-

formed of what timescale the Hardware Clock is using, it may clobber it with the wrong one. The kernel

uses UTC by default.

The first userspace command to set the System Clock informs the kernel what timescale the Hardware

Clock is using. This happens via the persistent_clock_is_local kernel variable. If −−hctosys or −−systz is

the first, it will set this variable according to the adjtime file or the appropriate command-line argument.

Note that when using this capability and the Hardware Clock timescale configuration is changed, then a re-

boot is required to notify the kernel.

hwclock −−adjust should not be used with NTP ’11 minute mode’.

util-linux July 2017 7

HWCLOCK(8) System Administration HWCLOCK(8)

ISA Hardware Clock Century value

There is some sort of standard that defines CMOS memory Byte 50 on an ISA machine as an indicator of

what century it is. hwclock does not use or set that byte because there are some machines that don’t define

the byte that way, and it really isn’t necessary anyway, since the year-of-century does a good job of imply-

ing which century it is.

If you have a bona fide use for a CMOS century byte, contact the hwclock maintainer; an option may be

appropriate.

Note that this section is only relevant when you are using the "direct ISA" method of accessing the Hard-

ware Clock. ACPI provides a standard way to access century values, when they are supported by the hard-

ware.

DATE-TIME CONFIGURATION
Keeping Time without External Synchronization

This discussion is based on the following conditions:

• Nothing is running that alters the date-time clocks, such as NTP daemon or a cron job."

• The system timezone is configured for the correct local time. See below, under POSIX vs ’RIGHT’.

• Early during startup the following are called, in this order:

adjtimex −−tick value −−frequency value

hwclock −−hctosys

• During shutdown the following is called:

hwclock −−systohc

* Systems without adjtimex may use ntptime.

Whether maintaining precision time with NTP daemon or not, it makes sense to configure the system to

keep reasonably good date-time on its own.

The first step in making that happen is having a clear understanding of the big picture. There are two com-

pletely separate hardware devices running at their own speed and drifting away from the ’correct’ time at

their own rates. The methods and software for drift correction are different for each of them. However,

most systems are configured to exchange values between these two clocks at startup and shutdown. Now

the individual device’s time keeping errors are transferred back and forth between each other. Attempt to

configure drift correction for only one of them, and the other’s drift will be overlaid upon it.

This problem can be avoided when configuring drift correction for the System Clock by simply not shutting

down the machine. This, plus the fact that all of hwclock’s precision (including calculating drift factors)

depends upon the System Clock’s rate being correct, means that configuration of the System Clock should

be done first.

The System Clock drift is corrected with the adjtimex(8) command’s −−tick and −−frequency options.

These two work together: tick is the coarse adjustment and frequency is the fine adjustment. (For systems

that do not have an adjtimex package, ntptime −f ppm may be used instead.)

Some Linux distributions attempt to automatically calculate the System Clock drift with adjtimex’s com-

pare operation. Trying to correct one drifting clock by using another drifting clock as a reference is akin to

a dog trying to catch its own tail. Success may happen eventually, but great effort and frustration will likely

precede it. This automation may yield an improvement over no configuration, but expecting optimum re-

sults would be in error. A better choice for manual configuration would be adjtimex’s −−log options.

It may be more effective to simply track the System Clock drift with sntp, or date −Ins and a precision

timepiece, and then calculate the correction manually.

After setting the tick and frequency values, continue to test and refine the adjustments until the System

Clock keeps good time. See adjtimex(8) for more information and the example demonstrating manual drift

calculations.

Once the System Clock is ticking smoothly, move on to the Hardware Clock.

As a rule, cold drift will work best for most use cases. This should be true even for 24/7 machines whose

util-linux July 2017 8

HWCLOCK(8) System Administration HWCLOCK(8)

normal downtime consists of a reboot. In that case the drift factor value makes little difference. But on the

rare occasion that the machine is shut down for an extended period, then cold drift should yield better re-

sults.

Steps to calculate cold drift:

1 Ensure that NTP daemon will not be launched at startup.

2 The System Clock time must be correct at shutdown!

3 Shut down the system.

4 Let an extended period pass without changing the Hardware Clock.

5 Start the system.

6 Immediately use hwclock to set the correct time, adding the −−update−drift option.

Note: if step 6 uses −−systohc, then the System Clock must be set correctly (step 6a) just before doing so.

Having hwclock calculate the drift factor is a good starting point, but for optimal results it will likely need

to be adjusted by directly editing the /etc/adjtime file. Continue to test and refine the drift factor until the

Hardware Clock is corrected properly at startup. To check this, first make sure that the System Time is cor-

rect before shutdown and then use sntp, or date −Ins and a precision timepiece, immediately after startup.

LOCAL vs UTC

Keeping the Hardware Clock in a local timescale causes inconsistent daylight saving time results:

• If Linux is running during a daylight saving time change, the time written to the Hardware Clock will be

adjusted for the change.

• If Linux is NOT running during a daylight saving time change, the time read from the Hardware Clock

will NOT be adjusted for the change.

The Hardware Clock on an ISA compatible system keeps only a date and time, it has no concept of time-

zone nor daylight saving. Therefore, when hwclock is told that it is in local time, it assumes it is in the ’cor-

rect’ local time and makes no adjustments to the time read from it.

Linux handles daylight saving time changes transparently only when the Hardware Clock is kept in the

UTC timescale. Doing so is made easy for system administrators as hwclock uses local time for its output

and as the argument to the −−date option.

POSIX systems, like Linux, are designed to have the System Clock operate in the UTC timescale. The

Hardware Clock’s purpose is to initialize the System Clock, so also keeping it in UTC makes sense.

Linux does, however, attempt to accommodate the Hardware Clock being in the local timescale. This is pri-

marily for dual-booting with older versions of MS Windows. From Windows 7 on, the RealTimeIsUniver-

sal registry key is supposed to be working properly so that its Hardware Clock can be kept in UTC.

POSIX vs ’RIGHT’

A discussion on date-time configuration would be incomplete without addressing timezones, this is mostly

well covered by tzset(3). One area that seems to have no documentation is the ’right’ directory of the Time

Zone Database, sometimes called tz or zoneinfo.

There are two separate databases in the zoneinfo system, posix and ’right’. ’Right’ (now named zone-

info−leaps) includes leap seconds and posix does not. To use the ’right’ database the System Clock must be

set to (UTC + leap seconds), which is equivalent to (TAI − 10). This allows calculating the exact number of

seconds between two dates that cross a leap second epoch. The System Clock is then converted to the cor-

rect civil time, including UTC, by using the ’right’ timezone files which subtract the leap seconds. Note:

this configuration is considered experimental and is known to have issues.

To configure a system to use a particular database all of the files located in its directory must be copied to

the root of /usr/share/zoneinfo. Files are never used directly from the posix or ’right’ subdirectories, e.g.,

TZ=’right/Europe/Dublin’. This habit was becoming so common that the upstream zoneinfo project re-

structured the system’s file tree by moving the posix and ’right’ subdirectories out of the zoneinfo directory

and into sibling directories:

util-linux July 2017 9

HWCLOCK(8) System Administration HWCLOCK(8)

/usr/share/zoneinfo

/usr/share/zoneinfo−posix

/usr/share/zoneinfo−leaps

Unfortunately, some Linux distributions are changing it back to the old tree structure in their packages. So

the problem of system administrators reaching into the ’right’ subdirectory persists. This causes the system

timezone to be configured to include leap seconds while the zoneinfo database is still configured to exclude

them. Then when an application such as a World Clock needs the South_Pole timezone file; or an email

MTA, or hwclock needs the UTC timezone file; they fetch it from the root of /usr/share/zoneinfo , because

that is what they are supposed to do. Those files exclude leap seconds, but the System Clock now includes

them, causing an incorrect time conversion.

Attempting to mix and match files from these separate databases will not work, because they each require

the System Clock to use a different timescale. The zoneinfo database must be configured to use either posix

or ’right’, as described above, or by assigning a database path to the TZDIR environment variable.

EXIT STATUS
One of the following exit values will be returned:

EXIT_SUCCESS (’0’ on POSIX systems)

Successful program execution.

EXIT_FAILURE (’1’ on POSIX systems)

The operation failed or the command syntax was not valid.

ENVIRONMENT
TZ If this variable is set its value takes precedence over the system configured timezone.

TZDIR

If this variable is set its value takes precedence over the system configured timezone database di-

rectory path.

FILES
/etc/adjtime

The configuration and state file for hwclock.

/etc/localtime

The system timezone file.

/usr/share/zoneinfo/

The system timezone database directory.

Device files hwclock may try for Hardware Clock access:

/dev/rtc0

/dev/rtc

/dev/misc/rtc

/dev/efirtc

/dev/misc/efirtc

SEE ALSO
date(1), adjtimex(8), gettimeofday(2), settimeofday(2), crontab(1), tzset(3)

AUTHORS
Written by Bryan Henderson, September 1996 (bryanh@giraffe-data.com), based on work done on the

clock(8) program by Charles Hedrick, Rob Hooft, and Harald Koenig. See the source code for complete

history and credits.

AV AILABILITY
The hwclock command is part of the util-linux package and is available from https://www.ker-

nel.org/pub/linux/utils/util-linux/.

util-linux July 2017 10

