
JOURNALD.CONF(5) journald.conf JOURNALD.CONF(5)

NAME
journald.conf, journald.conf.d, journald@.conf − Journal service configuration files

SYNOPSIS
/etc/systemd/journald.conf

/etc/systemd/journald.conf.d/*.conf

/run/systemd/journald.conf.d/*.conf

/usr/lib/systemd/journald.conf.d/*.conf

/etc/systemd/journald@NAMESPACE.conf

DESCRIPTION
These files configure various parameters of the systemd journal service, systemd-journald.service(8). See

systemd.syntax(7) for a general description of the syntax.

The systemd−journald instance managing the default namespace is configured by

/etc/systemd/journald.conf and associated drop−ins. Instances managing other namespaces read

/etc/systemd/journald@NAMESPACE.conf with the namespace identifier filled in. This allows each

namespace to carry a distinct configuration. See systemd-journald.service(8) for details about journal

namespaces.

CONFIGURATION DIRECTORIES AND PRECEDENCE
The default configuration is defined during compilation, so a configuration file is only needed when it is

necessary to deviate from those defaults. By default, the configuration file in /etc/systemd/ contains

commented out entries showing the defaults as a guide to the administrator. This file can be edited to create

local overrides.

When packages need to customize the configuration, they can install configuration snippets in

/usr/lib/systemd/*.conf.d/ or /usr/local/lib/systemd/*.conf.d/. The main configuration file is read before any

of the configuration directories, and has the lowest precedence; entries in a file in any configuration

directory override entries in the single configuration file. Files in the *.conf.d/ configuration subdirectories

are sorted by their filename in lexicographic order, reg ardless of in which of the subdirectories they reside.

When multiple files specify the same option, for options which accept just a single value, the entry in the

file with the lexicographically latest name takes precedence. For options which accept a list of values,

entries are collected as they occur in files sorted lexicographically.

Files in /etc/ are reserved for the local administrator, who may use this logic to override the configuration

files installed by vendor packages. It is recommended to prefix all filenames in those subdirectories with a

two−digit number and a dash, to simplify the ordering of the files.

To disable a configuration file supplied by the vendor, the recommended way is to place a symlink to

/dev/null in the configuration directory in /etc/, with the same filename as the vendor configuration file.

OPTIONS
All options are configured in the "[Journal]" section:

Storage=

Controls where to store journal data. One of "volatile", "persistent", "auto" and "none". If "volatile",

journal log data will be stored only in memory, i.e. below the /run/log/journal hierarchy (which is

created if needed). If "persistent", data will be stored preferably on disk, i.e. below the /var/log/journal

hierarchy (which is created if needed), with a fallback to /run/log/journal (which is created if needed),

during early boot and if the disk is not writable. "auto" is similar to "persistent" but the directory

/var/log/journal is not created if needed, so that its existence controls where log data goes. "none"

turns off all storage, all log data received will be dropped. Forwarding to other targets, such as the

console, the kernel log buffer, or a syslog socket will still work however. Defaults to "auto" in the

default journal namespace, and "persistent" in all others.

Compress=

Can take a boolean value. If enabled (the default), data objects that shall be stored in the journal and

are larger than the default threshold of 512 bytes are compressed before they are written to the file

systemd 245 1



JOURNALD.CONF(5) journald.conf JOURNALD.CONF(5)

system. It can also be set to a number of bytes to specify the compression threshold directly. Suffixes

like K, M, and G can be used to specify larger units.

Seal=

Takes a boolean value. If enabled (the default), and a sealing key is available (as created by

journalctl(1)'s −−setup−keys command), Forward Secure Sealing (FSS) for all persistent journal files

is enabled. FSS is based on Seekable Sequential Key Generators[1] by G. A. Marson and B.

Poettering (doi:10.1007/978−3−642−40203−6_7) and may be used to protect journal files from

unnoticed alteration.

SplitMode=

Controls whether to split up journal files per user, either "uid" or "none". Split journal files are

primarily useful for access control: on UNIX/Linux access control is managed per file, and the journal

daemon will assign users read access to their journal files. If "uid", all regular users (with UID outside

the range of system users, dynamic service users, and the nobody user) will each get their own journal

files, and system users will log to the system journal. See Users, Groups, UIDs and GIDs on

systemd systems[2] for more details about UID ranges. If "none", journal files are not split up by user

and all messages are instead stored in the single system journal. In this mode unprivileged users

generally do not have access to their own log data. Note that splitting up journal files by user is only

available for journals stored persistently. If journals are stored on volatile storage (see Storage=

above), only a single journal file is used. Defaults to "uid".

RateLimitIntervalSec=, RateLimitBurst=

Configures the rate limiting that is applied to all messages generated on the system. If, in the time

interval defined by RateLimitIntervalSec=, more messages than specified in RateLimitBurst= are

logged by a service, all further messages within the interval are dropped until the interval is over. A

message about the number of dropped messages is generated. This rate limiting is applied per−service,

so that two services which log do not interfere with each other's limits. Defaults to 10000 messages in

30s. The time specification for RateLimitIntervalSec= may be specified in the following units: "s",

"min", "h", "ms", "us". To turn off any kind of rate limiting, set either value to 0.

Note that the effective rate limit is multiplied with a factor derived from the available free disk space

for the journal. Currently, this factor is calculated using the base 2 logarithm.

Table 1. Example RateLimitBurst= rate modifications by the available disk space

Av ailable Disk Space Burst Multiplier

<= 1MB 1

<= 16MB 2

<= 256MB 3

<= 4GB 4

<= 64GB 5

<= 1TB 6

If a service provides rate limits for itself through LogRateLimitIntervalSec= and/or

LogRateLimitBurst= in systemd.exec(5), those values will override the settings specified here.

SystemMaxUse=, SystemKeepFree=, SystemMaxFileSize=, SystemMaxFiles=, RuntimeMaxUse=,

RuntimeKeepFree=, RuntimeMaxFileSize=, RuntimeMaxFiles=

Enforce size limits on the journal files stored. The options prefixed with "System" apply to the journal

files when stored on a persistent file system, more specifically /var/log/journal. The options prefixed

with "Runtime" apply to the journal files when stored on a volatile in−memory file system, more

specifically /run/log/journal. The former is used only when /var is mounted, writable, and the directory

/var/log/journal exists. Otherwise, only the latter applies. Note that this means that during early boot

and if the administrator disabled persistent logging, only the latter options apply, while the former

apply if persistent logging is enabled and the system is fully booted up. journalctl and

systemd−journald ignore all files with names not ending with ".journal" or ".journal˜", so only such

systemd 245 2



JOURNALD.CONF(5) journald.conf JOURNALD.CONF(5)

files, located in the appropriate directories, are taken into account when calculating current disk usage.

SystemMaxUse= and RuntimeMaxUse= control how much disk space the journal may use up at most.

SystemKeepFree= and RuntimeKeepFree= control how much disk space systemd−journald shall leave

free for other uses. systemd−journald will respect both limits and use the smaller of the two values.

The first pair defaults to 10% and the second to 15% of the size of the respective file system, but each

value is capped to 4G. If the file system is nearly full and either SystemKeepFree= or

RuntimeKeepFree= are violated when systemd−journald is started, the limit will be raised to the

percentage that is actually free. This means that if there was enough free space before and journal files

were created, and subsequently something else causes the file system to fill up, journald will stop

using more space, but it will not be removing existing files to reduce the footprint again, either. Also

note that only archived files are deleted to reduce the space occupied by journal files. This means that,

in effect, there might still be more space used than SystemMaxUse= or RuntimeMaxUse= limit after a

vacuuming operation is complete.

SystemMaxFileSize= and RuntimeMaxFileSize= control how large individual journal files may grow at

most. This influences the granularity in which disk space is made available through rotation, i.e.

deletion of historic data. Defaults to one eighth of the values configured with SystemMaxUse= and

RuntimeMaxUse=, so that usually seven rotated journal files are kept as history.

Specify values in bytes or use K, M, G, T, P, E as units for the specified sizes (equal to 1024, 1024², ...

bytes). Note that size limits are enforced synchronously when journal files are extended, and no

explicit rotation step triggered by time is needed.

SystemMaxFiles= and RuntimeMaxFiles= control how many individual journal files to keep at most.

Note that only archived files are deleted to reduce the number of files until this limit is reached; active

files will stay around. This means that, in effect, there might still be more journal files around in total

than this limit after a vacuuming operation is complete. This setting defaults to 100.

MaxFileSec=

The maximum time to store entries in a single journal file before rotating to the next one. Normally,

time−based rotation should not be required as size−based rotation with options such as

SystemMaxFileSize= should be sufficient to ensure that journal files do not grow without bounds.

However, to ensure that not too much data is lost at once when old journal files are deleted, it might

make sense to change this value from the default of one month. Set to 0 to turn off this feature. This

setting takes time values which may be suffixed with the units "year", "month", "week", "day", "h" or

"m" to override the default time unit of seconds.

MaxRetentionSec=

The maximum time to store journal entries. This controls whether journal files containing entries older

than the specified time span are deleted. Normally, time−based deletion of old journal files should not

be required as size−based deletion with options such as SystemMaxUse= should be sufficient to ensure

that journal files do not grow without bounds. However, to enforce data retention policies, it might

make sense to change this value from the default of 0 (which turns off this feature). This setting also

takes time values which may be suffixed with the units "year", "month", "week", "day", "h" or " m" to

override the default time unit of seconds.

SyncIntervalSec=

The timeout before synchronizing journal files to disk. After syncing, journal files are placed in the

OFFLINE state. Note that syncing is unconditionally done immediately after a log message of priority

CRIT, ALERT or EMERG has been logged. This setting hence applies only to messages of the levels

ERR, WARNING, NOTICE, INFO, DEBUG. The default timeout is 5 minutes.

ForwardToSyslog=, ForwardToKMsg=, ForwardToConsole=, ForwardToWall=

Control whether log messages received by the journal daemon shall be forwarded to a traditional

syslog daemon, to the kernel log buffer (kmsg), to the system console, or sent as wall messages to all

systemd 245 3



JOURNALD.CONF(5) journald.conf JOURNALD.CONF(5)

logged−in users. These options take boolean arguments. If forwarding to syslog is enabled but nothing

reads messages from the socket, forwarding to syslog has no effect. By default, only forwarding to

syslog and wall is enabled. These settings may be overridden at boot time with the kernel command

line options "systemd.journald.forward_to_syslog", "systemd.journald.forward_to_kmsg",

"systemd.journald.forward_to_console", and "systemd.journald.forward_to_wall". If the option name

is specified without "=" and the following argument, true is assumed. Otherwise, the argument is

parsed as a boolean.

When forwarding to the console, the TTY to log to can be changed with TTYPath=, described below.

When forwarding to the kernel log buffer (kmsg), make sure to select a suitably large size for the log

buffer, for example by adding "log_buf_len=8M" to the kernel command line. systemd will

automatically disable kernel's rate−limiting applied to userspace processes (equivalent to setting

"printk.devkmsg=on").

MaxLevelStore=, MaxLevelSyslog=, MaxLevelKMsg=, MaxLevelConsole=, MaxLevelWall=

Controls the maximum log level of messages that are stored in the journal, forwarded to syslog, kmsg,

the console or wall (if that is enabled, see above). As argument, takes one of "emerg", "alert", "crit",

"err", "warning", "notice", "info", "debug", or integer values in the range of 0–7 (corresponding to the

same levels). Messages equal or below the log level specified are stored/forwarded, messages above

are dropped. Defaults to "debug" for MaxLevelStore= and MaxLevelSyslog=, to ensure that the all

messages are stored in the journal and forwarded to syslog. Defaults to "notice" for MaxLevelKMsg=,

"info" for MaxLevelConsole=, and "emerg" for MaxLevelWall=. These settings may be overridden at

boot time with the kernel command line options "systemd.journald.max_level_store=",

"systemd.journald.max_level_syslog=", "systemd.journald.max_level_kmsg=",

"systemd.journald.max_level_console=", "systemd.journald.max_level_wall=".

ReadKMsg=

Takes a boolean value. If enabled systemd−journal processes /dev/kmsg messages generated by the

kernel. In the default journal namespace this option is enabled by default, it is disabled in all others.

TTYPath=

Change the console TTY to use if ForwardToConsole=yes is used. Defaults to /dev/console.

LineMax=

The maximum line length to permit when converting stream logs into record logs. When a systemd

unit's standard output/error are connected to the journal via a stream socket, the data read is split into

individual log records at newline ("\n", ASCII 10) and NUL characters. If no such delimiter is read for

the specified number of bytes a hard log record boundary is artificially inserted, breaking up overly

long lines into multiple log records. Selecting overly large values increases the possible memory usage

of the Journal daemon for each stream client, as in the worst case the journal daemon needs to buffer

the specified number of bytes in memory before it can flush a new log record to disk. Also note that

permitting overly large line maximum line lengths affects compatibility with traditional log protocols

as log records might not fit anymore into a single AF_UNIX or AF_INET datagram. Takes a size in

bytes. If the value is suffixed with K, M, G or T, the specified size is parsed as Kilobytes, Megabytes,

Gigabytes, or Terabytes (with the base 1024), respectively. Defaults to 48K, which is relatively large

but still small enough so that log records likely fit into network datagrams along with extra room for

metadata. Note that values below 79 are not accepted and will be bumped to 79.

FORWARDING TO TRADITIONAL SYSLOG DAEMONS
Journal events can be transferred to a different logging daemon in two different ways. With the first

method, messages are immediately forwarded to a socket (/run/systemd/journal/syslog), where the

traditional syslog daemon can read them. This method is controlled by the ForwardToSyslog= option. With

a second method, a syslog daemon behaves like a normal journal client, and reads messages from the

journal files, similarly to journalctl(1). With this, messages do not have to be read immediately, which

allows a logging daemon which is only started late in boot to access all messages since the start of the

system. In addition, full structured meta−data is available to it. This method of course is available only if

systemd 245 4



JOURNALD.CONF(5) journald.conf JOURNALD.CONF(5)

the messages are stored in a journal file at all. So it will not work if Storage=none is set. It should be noted

that usually the second method is used by syslog daemons, so the Storage= option, and not the

ForwardToSyslog= option, is relevant for them.

SEE ALSO
systemd(1), systemd-journald.service(8), journalctl(1), systemd.journal-fields(7), systemd-

system.conf(5)

NOTES
1. Seekable Sequential Key Generators

https://eprint.iacr.org/2013/397

2. Users, Groups, UIDs and GIDs on systemd systems

https://systemd.io/UIDS-GIDS

systemd 245 5


