
MAGIC (5) BSD File Formats Manual MAGIC (5)

NAME

magic — file command’s magic pattern file

DESCRIPTION

This manual page documents the format of magic files as used by the file(1) command, version 5.38. The

file(1) command identifies the type of a file using, among other tests, a test for whether the file contains

certain “magic patterns”. The database of these “magic patterns” is usually located in a binary file in

/usr/share/misc/magic.mgc or a directory of source text magic pattern fragment files in

/usr/share/misc/magic. The database specifies what patterns are to be tested for, what message or

MIME type to print if a particular pattern is found, and additional information to extract from the file.

The format of the source fragment files that are used to build this database is as follows: Each line of a frag-

ment file specifies a test to be performed. A test compares the data starting at a particular offset in the file

with a byte value, a string or a numeric value. If the test succeeds, a message is printed. The line consists of

the following fields:

offset A number specifying the offset (in bytes) into the file of the data which is to be tested. This off-

set can be a negative number if it is:

• The first direct offset of the magic entry (at continuation level 0), in which case it is inter-

preted an offset from end end of the file going backwards. This works only when a file de-

scriptor to the file is available and it is a regular file.

• A continuation offset relative to the end of the last up-level field (&).

type The type of the data to be tested. The possible values are:

byte A one-byte value.

short A two-byte value in this machine’s native byte order.

long A four-byte value in this machine’s native byte order.

quad An eight-byte value in this machine’s native byte order.

float A 32-bit single precision IEEE floating point number in this machine’s native

byte order.

double A 64-bit double precision IEEE floating point number in this machine’s native

byte order.

string A string of bytes. The string type specification can be optionally followed by

/[WwcCtbT]∗ . The “W” flag compacts whitespace in the target, which must

contain at least one whitespace character. If the magic has n consecutive blanks,

the target needs at least n consecutive blanks to match. The “w” flag treats every

blank in the magic as an optional blank. The “c” flag specifies case insensitive

matching: lower case characters in the magic match both lower and upper case

characters in the target, whereas upper case characters in the magic only match

upper case characters in the target. The “C” flag specifies case insensitive match-

ing: upper case characters in the magic match both lower and upper case charac-

ters in the target, whereas lower case characters in the magic only match upper

case characters in the target. To do a complete case insensitive match, specify

both “c” and “C”. The “t” flag forces the test to be done for text files, while the

“b” flag forces the test to be done for binary files. The “T” flag causes the string

to be trimmed, i.e. leading and trailing whitespace is deleted before the string is

printed.

BSD January 21, 2019 1

MAGIC (5) BSD File Formats Manual MAGIC (5)

pstring A Pascal-style string where the first byte/short/int is interpreted as the unsigned

length. The length defaults to byte and can be specified as a modifier. The fol-

lowing modifiers are supported:

B

A byte length (default).

H

A 2 byte big endian length.

h A 2 byte little endian length.

L

A 4 byte big endian length.

l A 4 byte little endian length.

J The length includes itself in its count.

The string is not NUL terminated. “J” is used rather than the more valuable “I”

because this type of length is a feature of the JPEG format.

date A four-byte value interpreted as a UNIX date.

qdate An eight-byte value interpreted as a UNIX date.

ldate A four-byte value interpreted as a UNIX-style date, but interpreted as local time

rather than UTC.

qldate An eight-byte value interpreted as a UNIX-style date, but interpreted as local

time rather than UTC.

qwdate An eight-byte value interpreted as a Windows-style date.

beid3 A 32-bit ID3 length in big-endian byte order.

beshort A two-byte value in big-endian byte order.

belong A four-byte value in big-endian byte order.

bequad An eight-byte value in big-endian byte order.

befloat A 32-bit single precision IEEE floating point number in big-endian byte order.

bedouble A 64-bit double precision IEEE floating point number in big-endian byte order.

bedate A four-byte value in big-endian byte order, interpreted as a Unix date.

beqdate An eight-byte value in big-endian byte order, interpreted as a Unix date.

beldate A four-byte value in big-endian byte order, interpreted as a UNIX-style date, but

interpreted as local time rather than UTC.

beqldate An eight-byte value in big-endian byte order, interpreted as a UNIX-style date,

but interpreted as local time rather than UTC.

beqwdate An eight-byte value in big-endian byte order, interpreted as a Windows-style

date.

bestring16 A two-byte unicode (UCS16) string in big-endian byte order.

leid3 A 32-bit ID3 length in little-endian byte order.

leshort A two-byte value in little-endian byte order.

lelong A four-byte value in little-endian byte order.

BSD January 21, 2019 2

MAGIC (5) BSD File Formats Manual MAGIC (5)

lequad An eight-byte value in little-endian byte order.

lefloat A 32-bit single precision IEEE floating point number in little-endian byte order.

ledouble A 64-bit double precision IEEE floating point number in little-endian byte order.

ledate A four-byte value in little-endian byte order, interpreted as a UNIX date.

leqdate An eight-byte value in little-endian byte order, interpreted as a UNIX date.

leldate A four-byte value in little-endian byte order, interpreted as a UNIX-style date,

but interpreted as local time rather than UTC.

leqldate An eight-byte value in little-endian byte order, interpreted as a UNIX-style date,

but interpreted as local time rather than UTC.

leqwdate An eight-byte value in little-endian byte order, interpreted as a Windows-style

date.

lestring16 A two-byte unicode (UCS16) string in little-endian byte order.

melong A four-byte value in middle-endian (PDP-11) byte order.

medate A four-byte value in middle-endian (PDP-11) byte order, interpreted as a UNIX

date.

meldate A four-byte value in middle-endian (PDP-11) byte order, interpreted as a UNIX-

style date, but interpreted as local time rather than UTC.

indirect Starting at the given offset, consult the magic database again. The offset of the

indirect magic is by default absolute in the file, but one can specify /r to in-

dicate that the offset is relative from the beginning of the entry.

name Define a “named” magic instance that can be called from another use magic en-

try, like a subroutine call. Named instance direct magic offsets are relative to the

offset of the previous matched entry, but indirect offsets are relative to the begin-

ning of the file as usual. Named magic entries always match.

use Recursively call the named magic starting from the current offset. If the name of

the referenced begins with a ˆ then the endianness of the magic is switched; if

the magic mentioned leshort for example, it is treated as beshort and vice

versa. This is useful to avoid duplicating the rules for different endianness.

regex A regular expression match in extended POSIX regular expression syntax (like

egrep). Regular expressions can take exponential time to process, and their per-

formance is hard to predict, so their use is discouraged. When used in produc-

tion environments, their performance should be carefully checked. The size of

the string to search should also be limited by specifying /<length>, to avoid

performance issues scanning long files. The type specification can also be op-

tionally followed by /[c][s][l]. The “c” flag makes the match case insensi-

tive, while the “s” flag update the offset to the start offset of the match, rather

than the end. The “l” modifier, changes the limit of length to mean number of

lines instead of a byte count. Lines are delimited by the platforms native line de-

limiter. When a line count is specified, an implicit byte count also computed as-

suming each line is 80 characters long. If neither a byte or line count is speci-

fied, the search is limited automatically to 8KiB. ˆ and $ match the beginning

and end of individual lines, respectively, not beginning and end of file.

BSD January 21, 2019 3

MAGIC (5) BSD File Formats Manual MAGIC (5)

search A literal string search starting at the given offset. The same modifier flags can be

used as for string patterns. The search expression must contain the range in the

form /number, that is the number of positions at which the match will be at-

tempted, starting from the start offset. This is suitable for searching larger binary

expressions with variable offsets, using \ escapes for special characters. The or-

der of modifier and number is not relevant.

default This is intended to be used with the test x (which is always true) and it has no

type. It matches when no other test at that continuation level has matched be-

fore. Clearing that matched tests for a continuation level, can be done using the

clear test.

clear This test is always true and clears the match flag for that continuation level. It is

intended to be used with the default test.

For compatibility with the Single UNIX Standard, the type specifiers dC and d1 are equivalent to

byte, the type specifiers uC and u1 are equivalent to ubyte, the type specifiers dS and d2 are

equivalent to short, the type specifiers uS and u2 are equivalent to ushort, the type speci-

fiers dI, dL, and d4 are equivalent to long, the type specifiers uI, uL, and u4 are equivalent to

ulong, the type specifier d8 is equivalent to quad, the type specifier u8 is equivalent to

uquad, and the type specifier s is equivalent to string. In addition, the type specifier dQ is

equivalent to quad and the type specifier uQ is equivalent to uquad.

Each top-level magic pattern (see below for an explanation of levels) is classified as text or binary

according to the types used. Types “regex” and “search” are classified as text tests, unless non-

printable characters are used in the pattern. All other tests are classified as binary. A top-level

pattern is considered to be a test text when all its patterns are text patterns; otherwise, it is consid-

ered to be a binary pattern. When matching a file, binary patterns are tried first; if no match is

found, and the file looks like text, then its encoding is determined and the text patterns are tried.

The numeric types may optionally be followed by & and a numeric value, to specify that the

value is to be AND’ed with the numeric value before any comparisons are done. Prepending a u

to the type indicates that ordered comparisons should be unsigned.

test The value to be compared with the value from the file. If the type is numeric, this value is speci-

fied in C form; if it is a string, it is specified as a C string with the usual escapes permitted (e.g. \n

for new-line).

Numeric values may be preceded by a character indicating the operation to be performed. It may

be =, to specify that the value from the file must equal the specified value, <, to specify that the

value from the file must be less than the specified value, >, to specify that the value from the file

must be greater than the specified value, &, to specify that the value from the file must have set all

of the bits that are set in the specified value, ˆ, to specify that the value from the file must have

clear any of the bits that are set in the specified value, or ˜, the value specified after is negated

before tested. x, to specify that any value will match. If the character is omitted, it is assumed to

be =. Operators &, ˆ, and ˜ don’t work with floats and doubles. The operator ! specifies that the

line matches if the test does not succeed.

Numeric values are specified in C form; e.g. 13 is decimal, 013 is octal, and 0x13 is hexadeci-

mal.

Numeric operations are not performed on date types, instead the numeric value is interpreted as

an offset.

For string values, the string from the file must match the specified string. The operators =, < and

> (but not &) can be applied to strings. The length used for matching is that of the string argu-

ment in the magic file. This means that a line can match any non-empty string (usually used to

BSD January 21, 2019 4

MAGIC (5) BSD File Formats Manual MAGIC (5)

then print the string), with >\0 (because all non-empty strings are greater than the empty string).

Dates are treated as numerical values in the respective internal representation.

The special test x always evaluates to true.

message The message to be printed if the comparison succeeds. If the string contains a printf(3) for-

mat specification, the value from the file (with any specified masking performed) is printed using

the message as the format string. If the string begins with “\b”, the message printed is the re-

mainder of the string with no whitespace added before it: multiple matches are normally sepa-

rated by a single space.

An APPLE 4+4 character APPLE creator and type can be specified as:

!:apple CREATYPE

A MIME type is given on a separate line, which must be the next non-blank or comment line after the magic

line that identifies the file type, and has the following format:

!:mime MIMETYPE

i.e. the literal string “!:mime” followed by the MIME type.

An optional strength can be supplied on a separate line which refers to the current magic description using

the following format:

!:strength OP VALUE

The operand OP can be: +, -, ∗ , or / and VALUE is a constant between 0 and 255. This constant is applied

using the specified operand to the currently computed default magic strength.

Some file formats contain additional information which is to be printed along with the file type or need addi-

tional tests to determine the true file type. These additional tests are introduced by one or more > characters

preceding the offset. The number of > on the line indicates the level of the test; a line with no > at the begin-

ning is considered to be at level 0. Tests are arranged in a tree-like hierarchy: if the test on a line at level n
succeeds, all following tests at level n+1 are performed, and the messages printed if the tests succeed, until a

line with level n (or less) appears. For more complex files, one can use empty messages to get just the

"if/then" effect, in the following way:

0 string MZ

>0x18 leshort <0x40 MS-DOS executable

>0x18 leshort >0x3f extended PC executable (e.g., MS Windows)

Offsets do not need to be constant, but can also be read from the file being examined. If the first character

following the last > is a (then the string after the parenthesis is interpreted as an indirect offset. That means

that the number after the parenthesis is used as an offset in the file. The value at that offset is read, and is

used again as an offset in the file. Indirect offsets are of the form: ((x
[[.,][bBcCeEfFgGhHiIlmsSqQ]][+−][y]). The value of x is used as an offset in the file. A byte, id3

length, short or long is read at that offset depending on the [bBcCeEfFgGhHiIlmsSqQ] type specifier. The

value is treated as signed if “”, is specified or unsigned if “”. is specified. The capitalized types interpret the

number as a big endian value, whereas the small letter versions interpret the number as a little endian value;

the m type interprets the number as a middle endian (PDP-11) value. To that number the value of y is added

and the result is used as an offset in the file. The default type if one is not specified is long. The following

types are recognized:

Type Sy Mnemonic Sy EndianSy Size

bcBc Byte/Char N/A 1

BSD January 21, 2019 5

MAGIC (5) BSD File Formats Manual MAGIC (5)

efg Double Little 8

EFG Double Big 8

hs Half/Short Little 2

HS Half/Short Big 2

i ID3 Little 4

I ID3 Big 4

m Middle Middle 4

q Quad Little 8

Q Quad Big 8

That way variable length structures can be examined:

MS Windows executables are also valid MS-DOS executables

0 string MZ

>0x18 leshort <0x40 MZ executable (MS-DOS)

skip the whole block below if it is not an extended executable

>0x18 leshort >0x3f

>>(0x3c.l) string PE\0\0 PE executable (MS-Windows)

>>(0x3c.l) string LX\0\0 LX executable (OS/2)

This strategy of examining has a drawback: you must make sure that you eventually print something, or users

may get empty output (such as when there is neither PE\0\0 nor LE\0\0 in the above example).

If this indirect offset cannot be used directly, simple calculations are possible: appending [+-∗ /%&|ˆ]number
inside parentheses allows one to modify the value read from the file before it is used as an offset:

MS Windows executables are also valid MS-DOS executables

0 string MZ

sometimes, the value at 0x18 is less that 0x40 but there’s still an

extended executable, simply appended to the file

>0x18 leshort <0x40

>>(4.s∗ 512) leshort 0x014c COFF executable (MS-DOS, DJGPP)

>>(4.s∗ 512) leshort !0x014c MZ executable (MS-DOS)

Sometimes you do not know the exact offset as this depends on the length or position (when indirection was

used before) of preceding fields. You can specify an offset relative to the end of the last up-level field using

‘&’ as a prefix to the offset:

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string PE\0\0 PE executable (MS-Windows)

immediately following the PE signature is the CPU type

>>>&0 leshort 0x14c for Intel 80386

>>>&0 leshort 0x184 for DEC Alpha

Indirect and relative offsets can be combined:

0 string MZ

>0x18 leshort <0x40

>>(4.s∗ 512) leshort !0x014c MZ executable (MS-DOS)

if it’s not COFF, go back 512 bytes and add the offset taken

from byte 2/3, which is yet another way of finding the start

of the extended executable

>>>&(2.s-514) string LE LE executable (MS Windows VxD driver)

BSD January 21, 2019 6

MAGIC (5) BSD File Formats Manual MAGIC (5)

Or the other way around:

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string LE\0\0 LE executable (MS-Windows)

at offset 0x80 (-4, since relative offsets start at the end

of the up-level match) inside the LE header, we find the absolute

offset to the code area, where we look for a specific signature

>>>(&0x7c.l+0x26) string UPX \b, UPX compressed

Or even both!

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string LE\0\0 LE executable (MS-Windows)

at offset 0x58 inside the LE header, we find the relative offset

to a data area where we look for a specific signature

>>>&(&0x54.l-3) string UNACE \b, ACE self-extracting archive

If you have to deal with offset/length pairs in your file, even the second value in a parenthesized expression

can be taken from the file itself, using another set of parentheses. Note that this additional indirect offset is

always relative to the start of the main indirect offset.

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string PE\0\0 PE executable (MS-Windows)

search for the PE section called ".idata"...

>>>&0xf4 search/0x140 .idata

...and go to the end of it, calculated from start+length;

these are located 14 and 10 bytes after the section name

>>>>(&0xe.l+(-4)) string PK\3\4 \b, ZIP self-extracting archive

If you have a list of known values at a particular continuation level, and you want to provide a switch-like de-

fault case:

clear that continuation level match

>18 clear

>18 lelong 1 one

>18 lelong 2 two

>18 default x

print default match

>>18 lelong x unmatched 0x%x

SEE ALSO

file(1) − the command that reads this file.

BUGS

The formats long, belong, lelong, melong, short, beshort, and leshort do not depend on the

length of the C data types short and long on the platform, even though the Single UNIX Specification im-

plies that they do. However, as OS X Mountain Lion has passed the Single UNIX Specification validation

suite, and supplies a version of file(1) in which they do not depend on the sizes of the C data types and

that is built for a 64-bit environment in which long is 8 bytes rather than 4 bytes, presumably the validation

suite does not test whether, for example long refers to an item with the same size as the C data type long.

There should probably be type names int8, uint8, int16, uint16, int32, uint32, int64, and

uint64, and specified-byte-order variants of them, to make it clearer that those types have specified widths.

BSD January 21, 2019 7

