
MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

NAME
man-pages − conventions for writing Linux man pages

SYNOPSIS
man [section] title

DESCRIPTION
This page describes the conventions that should be employed when writing man pages for the Linux man-

pages project, which documents the user-space API provided by the Linux kernel and the GNU C library.
The project thus provides most of the pages in Section 2, many of the pages that appear in Sections 3, 4,
and 7, and a few of the pages that appear in Sections 1, 5, and 8 of the man pages on a Linux system. The
conventions described on this page may also be useful for authors writing man pages for other projects.

Sections of the manual pages

The manual Sections are traditionally defined as follows:

1 User commands (Programs)

Those commands that can be executed by the user from within a shell.

2 System calls

Those functions which wrap operations performed by the kernel.

3 Library calls

All library functions excluding the system call wrappers (Most of the libc functions).

4 Special files (devices)

Files found in /dev which allow to access to devices through the kernel.

5 File formats and configuration files

Describes various human-readable file formats and configuration files.

6 Games Games and funny little programs available on the system.

7 Overview, conventions, and miscellaneous

Overviews or descriptions of various topics, conventions and protocols, character set standards,
the standard filesystem layout, and miscellaneous other things.

8 System management commands

Commands like mount(8), many of which only root can execute.

Macro package

New manual pages should be marked up using the groff an.tmac package described in man(7). This
choice is mainly for consistency: the vast majority of existing Linux manual pages are marked up using
these macros.

Conventions for source file layout

Please limit source code line length to no more than about 75 characters wherever possible. This helps
avoid line-wrapping in some mail clients when patches are submitted inline.

Title line

The first command in a man page should be a TH command:

.TH title section date source manual

where:

title The title of the man page, written in all caps (e.g., MAN-PAGES).

section The section number in which the man page should be placed (e.g., 7).

date The date of the last nontrivial change that was made to the man page. (Within the
man-pages project, the necessary updates to these timestamps are handled automati-
cally by scripts, so there is no need to manually update them as part of a patch.)
Dates should be written in the form YYYY-MM-DD.

Linux 2019-10-10 1

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

source The source of the command, function, or system call.

For those few man-pages pages in Sections 1 and 8, probably you just want to write
GNU .

For system calls, just write Linux. (An earlier practice was to write the version num-
ber of the kernel from which the manual page was being written/checked. However,
this was never done consistently, and so was probably worse than including no version
number. Henceforth, avoid including a version number.)

For library calls that are part of glibc or one of the other common GNU libraries, just
use GNU C Library, GNU , or an empty string.

For Section 4 pages, use Linux.

In cases of doubt, just write Linux, or GNU .

manual The title of the manual (e.g., for Section 2 and 3 pages in the man-pages package, use
Linux Programmer’s Manual).

Sections within a manual page

The list below shows conventional or suggested sections. Most manual pages should include at least the
highlighted sections. Arrange a new manual page so that sections are placed in the order shown in the list.

NAME

SYNOPSIS

CONFIGURATION [Normally only in Section 4]
DESCRIPTION

OPTIONS [Normally only in Sections 1, 8]
EXIT STATUS [Normally only in Sections 1, 8]
RETURN VALUE [Normally only in Sections 2, 3]
ERRORS [Typically only in Sections 2, 3]
ENVIRONMENT
FILES
VERSIONS [Normally only in Sections 2, 3]
ATTRIBUTES [Normally only in Sections 2, 3]
CONFORMING TO
NOTES
BUGS
EXAMPLE
SEE ALSO

Where a traditional heading would apply, please use it; this kind of consistency can make the information
easier to understand. If you must, you can create your own headings if they make things easier to under-
stand (this can be especially useful for pages in Sections 4 and 5). However, before doing this, consider
whether you could use the traditional headings, with some subsections (.SS) within those sections.

The following list elaborates on the contents of each of the above sections.

NAME The name of this manual page.

See man(7) for important details of the line(s) that should follow the .SH NAME com-
mand. All words in this line (including the word immediately following the "\−") should
be in lowercase, except where English or technical terminological convention dictates oth-
erwise.

SYNOPSIS A brief summary of the command or function’s interface.

For commands, this shows the syntax of the command and its arguments (including op-
tions); boldface is used for as-is text and italics are used to indicate replaceable argu-
ments. Brackets ([]) surround optional arguments, vertical bars (|) separate choices, and
ellipses (...) can be repeated. For functions, it shows any required data declarations or
#include directives, followed by the function declaration.

Linux 2019-10-10 2

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

Where a feature test macro must be defined in order to obtain the declaration of a function
(or a variable) from a header file, then the SYNOPSIS should indicate this, as described in
feature_test_macros(7).

CONFIGURATION

Configuration details for a device.

This section normally appears only in Section 4 pages.

DESCRIPTION

An explanation of what the program, function, or format does.

Discuss how it interacts with files and standard input, and what it produces on standard
output or standard error. Omit internals and implementation details unless they’re critical
for understanding the interface. Describe the usual case; for information on command-
line options of a program use the OPTIONS section.

When describing new behavior or new flags for a system call or library function, be care-
ful to note the kernel or C library version that introduced the change. The preferred
method of noting this information for flags is as part of a .TP list, in the following form
(here, for a new system call flag):

XYZ_FLAG (since Linux 3.7)
Description of flag...

Including version information is especially useful to users who are constrained to using
older kernel or C library versions (which is typical in embedded systems, for example).

OPTIONS A description of the command-line options accepted by a program and how they change
its behavior.

This section should appear only for Section 1 and 8 manual pages.

EXIT STATUS A list of the possible exit status values of a program and the conditions that cause these
values to be returned.

This section should appear only for Section 1 and 8 manual pages.

RETURN VALUE

For Section 2 and 3 pages, this section gives a list of the values the library routine will re-
turn to the caller and the conditions that cause these values to be returned.

ERRORS For Section 2 and 3 manual pages, this is a list of the values that may be placed in errno

in the event of an error, along with information about the cause of the errors.

Where several different conditions produce the same error, the preferred approach is to
create separate list entries (with duplicate error names) for each of the conditions. This
makes the separate conditions clear, may make the list easier to read, and allows metain-
formation (e.g., kernel version number where the condition first became applicable) to be
more easily marked for each condition.

The error list should be in alphabetical order.

ENVIRONMENT

A list of all environment variables that affect the program or function and how they affect
it.

FILES A list of the files the program or function uses, such as configuration files, startup files,
and files the program directly operates on.

Give the full pathname of these files, and use the installation process to modify the direc-
tory part to match user preferences. For many programs, the default installation location
is in /usr/local, so your base manual page should use /usr/local as the base.

ATTRIBUTES A summary of various attributes of the function(s) documented on this page. See at-

tributes(7) for further details.

Linux 2019-10-10 3

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

VERSIONS A brief summary of the Linux kernel or glibc versions where a system call or library func-
tion appeared, or changed significantly in its operation.

As a general rule, every new interface should include a VERSIONS section in its manual
page. Unfortunately, many existing manual pages don’t include this information (since
there was no policy to do so when they were written). Patches to remedy this are wel-
come, but, from the perspective of programmers writing new code, this information prob-
ably matters only in the case of kernel interfaces that have been added in Linux 2.4 or
later (i.e., changes since kernel 2.2), and library functions that have been added to glibc
since version 2.1 (i.e., changes since glibc 2.0).

The syscalls(2) manual page also provides information about kernel versions in which
various system calls first appeared.

CONFORMING TO

A description of any standards or conventions that relate to the function or command de-
scribed by the manual page.

The preferred terms to use for the various standards are listed as headings in stan-

dards(7).

For a page in Section 2 or 3, this section should note the POSIX.1 version(s) that the call
conforms to, and also whether the call is specified in C99. (Don’t worry too much about
other standards like SUS, SUSv2, and XPG, or the SVr4 and 4.xBSD implementation
standards, unless the call was specified in those standards, but isn’t in the current version
of POSIX.1.)

If the call is not governed by any standards but commonly exists on other systems, note
them. If the call is Linux-specific, note this.

If this section consists of just a list of standards (which it commonly does), terminate the
list with a period ('.').

NOTES Miscellaneous notes.

For Section 2 and 3 man pages you may find it useful to include subsections (SS) named
Linux Notes and Glibc Notes.

In Section 2, use the heading C library/kernel differences to mark off notes that describe
the differences (if any) between the C library wrapper function for a system call and the
raw system call interface provided by the kernel.

BUGS A list of limitations, known defects or inconveniences, and other questionable activities.

EXAMPLE One or more examples demonstrating how this function, file or command is used.

For details on writing example programs, see Example programs below.

AUTHORS A list of authors of the documentation or program.

Use of an AUTHORS section is strongly discouraged. Generally, it is better not to clut-
ter every page with a list of (over time potentially numerous) authors; if you write or sig-
nificantly amend a page, add a copyright notice as a comment in the source file. If you
are the author of a device driver and want to include an address for reporting bugs, place
this under the BUGS section.

SEE ALSO A comma-separated list of related man pages, possibly followed by other related pages or
documents.

The list should be ordered by section number and then alphabetically by name. Do not
terminate this list with a period.

Where the SEE ALSO list contains many long manual page names, to improve the visual
result of the output, it may be useful to employ the .ad l (don’t right justify) and .nh

(don’t hyphenate) directives. Hyphenation of individual page names can be prevented by

Linux 2019-10-10 4

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

preceding words with the string "\%".

Given the distributed, autonomous nature of FOSS projects and their documentation, it is
sometimes necessary—and in many cases desirable—that the SEE ALSO section includes
references to manual pages provided by other projects.

STYLE GUIDE
The following subsections describe the preferred style for the man-pages project. For details not covered
below, the Chicago Manual of Style is usually a good source; try also grepping for preexisting usage in the
project source tree.

Use of gender-neutral language

As far as possible, use gender-neutral language in the text of man pages. Use of "they" ("them", "them-
self", "their") as a gender-neutral singular pronoun is acceptable.

Formatting conventions for manual pages describing commands

For manual pages that describe a command (typically in Sections 1 and 8), the arguments are always speci-
fied using italics, even in the SYNOPSIS section.

The name of the command, and its options, should always be formatted in bold.

Formatting conventions for manual pages describing functions

For manual pages that describe functions (typically in Sections 2 and 3), the arguments are always specified
using italics, even in the SYNOPSIS section, where the rest of the function is specified in bold:

int myfunction(int argc, char **argv);

Variable names should, like argument names, be specified in italics.

Any reference to the subject of the current manual page should be written with the name in bold followed
by a pair of parentheses in Roman (normal) font. For example, in the fcntl(2) man page, references to the
subject of the page would be written as: fcntl(). The preferred way to write this in the source file is:

.BR fcntl ()

(Using this format, rather than the use of "\fB...\fP()" makes it easier to write tools that parse man page
source files.)

Use semantic newlines

In the source of a manual page, new sentences should be started on new lines, and long sentences should
split into lines at clause breaks (commas, semicolons, colons, and so on). This convention, sometimes
known as "semantic newlines", makes it easier to see the effect of patches, which often operate at the level
of individual sentences or sentence clauses.

Formatting conventions (general)

Paragraphs should be separated by suitable markers (usually either .PP or .IP). Do not separate paragraphs
using blank lines, as this results in poor rendering in some output formats (such as PostScript and PDF).

Filenames (whether pathnames, or references to header files) are always in italics (e.g., <stdio.h>), except
in the SYNOPSIS section, where included files are in bold (e.g., #include <stdio.h>). When referring to a
standard header file include, specify the header file surrounded by angle brackets, in the usual C way (e.g.,
<stdio.h>).

Special macros, which are usually in uppercase, are in bold (e.g., MAXINT). Exception: don’t boldface
NULL.

When enumerating a list of error codes, the codes are in bold (this list usually uses the .TP macro).

Complete commands should, if long, be written as an indented line on their own, with a blank line before
and after the command, for example

man 7 man−pages

If the command is short, then it can be included inline in the text, in italic format, for example, man 7 man-

pages. In this case, it may be worth using nonbreaking spaces ("\ ") at suitable places in the command.
Command options should be written in italics (e.g., −l).

Linux 2019-10-10 5

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

Expressions, if not written on a separate indented line, should be specified in italics. Again, the use of non-
breaking spaces may be appropriate if the expression is inlined with normal text.

When showing example shell sessions, user input should be formatted in bold, for example

$ date

Thu Jul 7 13:01:27 CEST 2016

Any reference to another man page should be written with the name in bold, always followed by the section
number, formatted in Roman (normal) font, without any separating spaces (e.g., intro(2)). The preferred
way to write this in the source file is:

.BR intro (2)

(Including the section number in cross references lets tools like man2html(1) create properly hyperlinked
pages.)

Control characters should be written in bold face, with no quotes; for example, ˆX.

Spelling

Starting with release 2.59, man-pages follows American spelling conventions (previously, there was a ran-
dom mix of British and American spellings); please write all new pages and patches according to these con-
ventions.

Aside from the well-known spelling differences, there are a few other subtleties to watch for:

* American English tends to use the forms "backward", "upward", "toward", and so on rather than the
British forms "backwards", "upwards", "towards", and so on.

BSD version numbers

The classical scheme for writing BSD version numbers is x.yBSD, where x.y is the version number (e.g.,
4.2BSD). Avoid forms such as BSD 4.3.

Capitalization

In subsection ("SS") headings, capitalize the first word in the heading, but otherwise use lowercase, except
where English usage (e.g., proper nouns) or programming language requirements (e.g., identifier names)
dictate otherwise. For example:

.SS Unicode under Linux

Indentation of structure definitions, shell session logs, and so on

When structure definitions, shell session logs, and so on are included in running text, indent them by 4 spa-
ces (i.e., a block enclosed by .in +4n and .in), format them using the .EX and EE macros, and surround
them with suitable paragraph markers (either .PP or .IP). For example:

.PP

.in +4n

.EX

int

main(int argc, char *argv[])

{

return 0;

}

.EE

.in

.PP

Preferred terms

The following table lists some preferred terms to use in man pages, mainly to ensure consistency across
pages.

Term Avoid using Notes

Linux 2019-10-10 6

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

bit mask bitmask
built-in builtin
Epoch epoch For the UNIX Epoch

(00:00:00, 1 Jan 1970 UTC)
filename file name
filesystem file system
hostname host name
inode i-node
lowercase lower case, lower-case
nonzero non-zero
pathname path name
pseudoterminal pseudo-terminal
privileged port reserved port, system port
real-time realtime, real time
run time runtime
saved set-group-ID saved group ID, saved set-

GID
saved set-user-ID saved user ID, saved set-UID
set-group-ID set-GID, setgid
set-user-ID set-UID, setuid
superuser super user, super-user
superblock super block, super-block
timestamp time stamp
timezone time zone
uppercase upper case, upper-case
usable useable
user space userspace
username user name
x86-64 x86_64 Except if referring to result

of "uname −m" or similar
zeros zeroes

See also the discussion Hyphenation of attributive compounds below.

Terms to avoid

The following table lists some terms to avoid using in man pages, along with some suggested alternatives,
mainly to ensure consistency across pages.

Av oid Use instead Notes

32bit 32-bit same for 8-bit, 16-bit, etc.
current process calling process A common mistake made by

kernel programmers when
writing man pages

manpage man page, manual page
minus infinity negative infinity
non-root unprivileged user
non-superuser unprivileged user
nonprivileged unprivileged
OS operating system
plus infinity positive infinity
pty pseudoterminal
tty terminal
Unices UNIX systems
Unixes UNIX systems

Linux 2019-10-10 7

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

Trademarks

Use the correct spelling and case for trademarks. The following is a list of the correct spellings of various
relevant trademarks that are sometimes misspelled:

DG/UX
HP-UX
UNIX
UnixWare

NULL, NUL, null pointer, and null character

A null pointer is a pointer that points to nothing, and is normally indicated by the constant NULL. On the
other hand, NUL is the null byte, a byte with the value 0, represented in C via the character constant '\0' .

The preferred term for the pointer is "null pointer" or simply "NULL"; avoid writing "NULL pointer".

The preferred term for the byte is "null byte". Av oid writing "NUL", since it is too easily confused with
"NULL". Avoid also the terms "zero byte" and "null character". The byte that terminates a C string should
be described as "the terminating null byte"; strings may be described as "null-terminated", but avoid the use
of "NUL-terminated".

Hyperlinks

For hyperlinks, use the .UR/.UE macro pair (see groff_man(7)). This produces proper hyperlinks that can
be used in a web browser, when rendering a page with, say:

BROWSER=firefox man -H pagename

Use of e.g., i.e., etc., a.k.a., and similar

In general, the use of abbreviations such as "e.g.", "i.e.", "etc.", "cf.", and "a.k.a." should be avoided, in fa-
vor of suitable full wordings ("for example", "that is", "compare to", "and so on", "also known as").

The only place where such abbreviations may be acceptable is in short parenthetical asides (e.g., like this
one).

Always include periods in such abbreviations, as shown here. In addition, "e.g." and "i.e." should always
be followed by a comma.

Em-dashes

The way to write an em-dash—the glyph that appears at either end of this subphrase—in *roff is with the
macro "\(em". (On an ASCII terminal, an em-dash typically renders as two hyphens, but in other typo-
graphical contexts it renders as a long dash.) Em-dashes should be written without surrounding spaces.

Hyphenation of attributive compounds

Compound terms should be hyphenated when used attributively (i.e., to qualify a following noun). Some
examples:

32-bit value
command-line argument
floating-point number
run-time check
user-space function
wide-character string

Hyphenation with multi, non, pre, re, sub, and so on

The general tendency in modern English is not to hyphenate after prefixes such as "multi", "non", "pre",
"re", "sub", and so on. Manual pages should generally follow this rule when these prefixes are used in natu-
ral English constructions with simple suffixes. The following list gives some examples of the preferred
forms:

interprocess
multithreaded
multiprocess
nonblocking
nondefault

Linux 2019-10-10 8

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

nonempty
noninteractive
nonnegative
nonportable
nonzero
preallocated
precreate
prerecorded
reestablished
reinitialize
rearm
reread
subcomponent
subdirectory
subsystem

Hyphens should be retained when the prefixes are used in nonstandard English words, with trademarks,
proper nouns, acronyms, or compound terms. Some examples:

non-ASCII
non-English
non-NULL
non-real-time

Finally, note that "re-create" and "recreate" are two different verbs, and the former is probably what you
want.

Real minus character

Where a real minus character is required (e.g., for numbers such as −1, for man page cross references such
as utf−8(7), or when writing options that have a leading dash, such as in ls −l), use the following form in
the man page source:

\−

This guideline applies also to code examples.

Character constants

To produce single quotes that render well in both ASCII and UTF-8, use the following form for character
constants in the man page source:

\(aqC\(aq

where C is the quoted character. This guideline applies also to character constants used in code examples.

Example programs and shell sessions

Manual pages may include example programs demonstrating how to use a system call or library function.
However, note the following:

* Example programs should be written in C.

* An example program is necessary and useful only if it demonstrates something beyond what can easily
be provided in a textual description of the interface. An example program that does nothing other than
call an interface usually serves little purpose.

* Example programs should be fairly short (preferably less than 100 lines; ideally less than 50 lines).

* Example programs should do error checking after system calls and library function calls.

* Example programs should be complete, and compile without warnings when compiled with cc −Wall.

* Where possible and appropriate, example programs should allow experimentation, by varying their be-
havior based on inputs (ideally from command-line arguments, or alternatively, via input read by the
program).

Linux 2019-10-10 9

MAN-PAGES(7) Linux Programmer’s Manual MAN-PAGES(7)

* Example programs should be laid out according to Kernighan and Ritchie style, with 4-space indents.
(Avoid the use of TAB characters in source code!) The following command can be used to format your
source code to something close to the preferred style:

indent −npro −kr −i4 −ts4 −sob −l72 −ss −nut −psl prog.c

* For consistency, all example programs should terminate using either of:

exit(EXIT_SUCCESS);
exit(EXIT_FAILURE);

Av oid using the following forms to terminate a program:

exit(0);
exit(1);
return n;

* If there is extensive explanatory text before the program source code, mark off the source code with a
subsection heading Program source, as in:

.SS Program source

Always do this if the explanatory text includes a shell session log.

If you include a shell session log demonstrating the use of a program or other system feature:

* Place the session log above the source code listing

* Indent the session log by four spaces.

* Boldface the user input text, to distinguish it from output produced by the system.

For some examples of what example programs should look like, see wait(2) and pipe(2).

EXAMPLE
For canonical examples of how man pages in the man-pages package should look, see pipe(2) and fcntl(2).

SEE ALSO
man(1), man2html(1), attributes(7), groff(7), groff_man(7), man(7), mdoc(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 10

