
MQ_OVERVIEW(7) Linux Programmer’s Manual MQ_OVERVIEW(7)

NAME
mq_overview − overview of POSIX message queues

DESCRIPTION
POSIX message queues allow processes to exchange data in the form of messages. This API is distinct

from that provided by System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.), but provides

similar functionality.

Message queues are created and opened using mq_open(3); this function returns a message queue descrip-

tor (mqd_t), which is used to refer to the open message queue in later calls. Each message queue is identi-

fied by a name of the form /somename; that is, a null-terminated string of up to NAME_MAX (i.e., 255)

characters consisting of an initial slash, followed by one or more characters, none of which are slashes.

Tw o processes can operate on the same queue by passing the same name to mq_open(3).

Messages are transferred to and from a queue using mq_send(3) and mq_receive(3). When a process has

finished using the queue, it closes it using mq_close(3), and when the queue is no longer required, it can be

deleted using mq_unlink(3). Queue attributes can be retrieved and (in some cases) modified using

mq_getattr(3) and mq_setattr(3). A process can request asynchronous notification of the arrival of a mes-

sage on a previously empty queue using mq_notify(3).

A message queue descriptor is a reference to an open message queue description (see open(2)). After a

fork(2), a child inherits copies of its parent’s message queue descriptors, and these descriptors refer to the

same open message queue descriptions as the corresponding message queue descriptors in the parent. Cor-

responding message queue descriptors in the two processes share the flags (mq_flags) that are associated

with the open message queue description.

Each message has an associated priority, and messages are always delivered to the receiving process high-

est priority first. Message priorities range from 0 (low) to sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On

Linux, sysconf(_SC_MQ_PRIO_MAX) returns 32768, but POSIX.1 requires only that an implementation

support at least priorities in the range 0 to 31; some implementations provide only this range.

The remainder of this section describes some specific details of the Linux implementation of POSIX mes-

sage queues.

Library interfaces and system calls

In most cases the mq_*() library interfaces listed above are implemented on top of underlying system calls

of the same name. Deviations from this scheme are indicated in the following table:

Library interface System call

mq_close(3) close(2)

mq_getattr(3) mq_getsetattr(2)

mq_notify(3) mq_notify(2)

mq_open(3) mq_open(2)

mq_receive(3) mq_timedreceive(2)

mq_send(3) mq_timedsend(2)

mq_setattr(3) mq_getsetattr(2)

mq_timedreceive(3) mq_timedreceive(2)

mq_timedsend(3) mq_timedsend(2)

mq_unlink(3) mq_unlink(2)

Versions

POSIX message queues have been supported on Linux since kernel 2.6.6. Glibc support has been provided

since version 2.3.4.

Kernel configuration

Support for POSIX message queues is configurable via the CONFIG_POSIX_MQUEUE kernel configu-

ration option. This option is enabled by default.

Persistence

POSIX message queues have kernel persistence: if not removed by mq_unlink(3), a message queue will

exist until the system is shut down.

Linux 2019-10-10 1

MQ_OVERVIEW(7) Linux Programmer’s Manual MQ_OVERVIEW(7)

Linking

Programs using the POSIX message queue API must be compiled with cc −lrt to link against the real-time

library, librt.

/proc interfaces

The following interfaces can be used to limit the amount of kernel memory consumed by POSIX message

queues and to set the default attributes for new message queues:

/proc/sys/fs/mqueue/msg_default (since Linux 3.5)

This file defines the value used for a new queue’s mq_maxmsg setting when the queue is created

with a call to mq_open(3) where attr is specified as NULL. The default value for this file is 10.

The minimum and maximum are as for /proc/sys/fs/mqueue/msg_max. A new queue’s default

mq_maxmsg value will be the smaller of msg_default and msg_max. Up until Linux 2.6.28, the

default mq_maxmsg was 10; from Linux 2.6.28 to Linux 3.4, the default was the value defined for

the msg_max limit.

/proc/sys/fs/mqueue/msg_max

This file can be used to view and change the ceiling value for the maximum number of messages

in a queue. This value acts as a ceiling on the attr−>mq_maxmsg argument given to mq_open(3).

The default value for msg_max is 10. The minimum value is 1 (10 in kernels before 2.6.28). The

upper limit is HARD_MSGMAX. The msg_max limit is ignored for privileged processes

(CAP_SYS_RESOURCE), but the HARD_MSGMAX ceiling is nevertheless imposed.

The definition of HARD_MSGMAX has changed across kernel versions:

* Up to Linux 2.6.32: 131072 / sizeof(void *)

* Linux 2.6.33 to 3.4: (32768 * sizeof(void *) / 4)

* Since Linux 3.5: 65,536

/proc/sys/fs/mqueue/msgsize_default (since Linux 3.5)

This file defines the value used for a new queue’s mq_msgsize setting when the queue is created

with a call to mq_open(3) where attr is specified as NULL. The default value for this file is 8192

(bytes). The minimum and maximum are as for /proc/sys/fs/mqueue/msgsize_max. If msg-

size_default exceeds msgsize_max, a new queue’s default mq_msgsize value is capped to the msg-

size_max limit. Up until Linux 2.6.28, the default mq_msgsize was 8192; from Linux 2.6.28 to

Linux 3.4, the default was the value defined for the msgsize_max limit.

/proc/sys/fs/mqueue/msgsize_max

This file can be used to view and change the ceiling on the maximum message size. This value

acts as a ceiling on the attr−>mq_msgsize argument given to mq_open(3). The default value for

msgsize_max is 8192 bytes. The minimum value is 128 (8192 in kernels before 2.6.28). The up-

per limit for msgsize_max has varied across kernel versions:

* Before Linux 2.6.28, the upper limit is INT_MAX.

* From Linux 2.6.28 to 3.4, the limit is 1,048,576.

* Since Linux 3.5, the limit is 16,777,216 (HARD_MSGSIZEMAX).

The msgsize_max limit is ignored for privileged process (CAP_SYS_RESOURCE), but, since

Linux 3.5, the HARD_MSGSIZEMAX ceiling is enforced for privileged processes.

/proc/sys/fs/mqueue/queues_max

This file can be used to view and change the system-wide limit on the number of message queues

that can be created. The default value for queues_max is 256. No ceiling is imposed on the

queues_max limit; privileged processes (CAP_SYS_RESOURCE) can exceed the limit (but see

BUGS).

Resource limit

The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount of space that can be con-

sumed by all of the message queues belonging to a process’s real user ID, is described in getrlimit(2).

Linux 2019-10-10 2

MQ_OVERVIEW(7) Linux Programmer’s Manual MQ_OVERVIEW(7)

Mounting the message queue filesystem

On Linux, message queues are created in a virtual filesystem. (Other implementations may also provide

such a feature, but the details are likely to differ.) This filesystem can be mounted (by the superuser) using

the following commands:

mkdir /dev/mqueue

mount −t mqueue none /dev/mqueue

The sticky bit is automatically enabled on the mount directory.

After the filesystem has been mounted, the message queues on the system can be viewed and manipulated

using the commands usually used for files (e.g., ls(1) and rm(1)).

The contents of each file in the directory consist of a single line containing information about the queue:

$ cat /dev/mqueue/mymq

QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260

These fields are as follows:

QSIZE Number of bytes of data in all messages in the queue (but see BUGS).

NOTIFY_PID

If this is nonzero, then the process with this PID has used mq_notify(3) to register for asynchro-

nous message notification, and the remaining fields describe how notification occurs.

NOTIFY

Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2 is SIGEV_THREAD.

SIGNO

Signal number to be used for SIGEV_SIGNAL.

Linux implementation of message queue descriptors

On Linux, a message queue descriptor is actually a file descriptor. (POSIX does not require such an imple-

mentation.) This means that a message queue descriptor can be monitored using select(2), poll(2), or

epoll(7). This is not portable.

The close-on-exec flag (see open(2)) is automatically set on the file descriptor returned by mq_open(2).

IPC namespaces

For a discussion of the interaction of POSIX message queue objects and IPC namespaces, see ipc_name-

spaces(7).

NOTES
System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an older API for exchanging mes-

sages between processes. POSIX message queues provide a better designed interface than System V mes-

sage queues; on the other hand POSIX message queues are less widely available (especially on older sys-

tems) than System V message queues.

Linux does not currently (2.6.26) support the use of access control lists (ACLs) for POSIX message queues.

BUGS
In Linux versions 3.5 to 3.14, the kernel imposed a ceiling of 1024 (HARD_QUEUESMAX) on the value

to which the queues_max limit could be raised, and the ceiling was enforced even for privileged processes.

This ceiling value was removed in Linux 3.14, and patches to stable kernels 3.5.x to 3.13.x also removed

the ceiling.

As originally implemented (and documented), the QSIZE field displayed the total number of (user-sup-

plied) bytes in all messages in the message queue. Some changes in Linux 3.5 inadvertently changed the

behavior, so that this field also included a count of kernel overhead bytes used to store the messages in the

queue. This behavioral regression was rectified in Linux 4.2 (and earlier stable kernel series), so that the

count once more included just the bytes of user data in messages in the queue.

Linux 2019-10-10 3

MQ_OVERVIEW(7) Linux Programmer’s Manual MQ_OVERVIEW(7)

EXAMPLE
An example of the use of various message queue functions is shown in mq_notify(3).

SEE ALSO
getrlimit(2), mq_getsetattr(2), poll(2), select(2), mq_close(3), mq_getattr(3), mq_notify(3),

mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), epoll(7), namespaces(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 4

