
MTRACE(3) Linux Programmer’s Manual MTRACE(3)

NAME
mtrace, muntrace − malloc tracing

SYNOPSIS
#include <mcheck.h>

void mtrace(void);

void muntrace(void);

DESCRIPTION
The mtrace() function installs hook functions for the memory-allocation functions (malloc(3), realloc(3)

memalign(3), free(3)). These hook functions record tracing information about memory allocation and de-

allocation. The tracing information can be used to discover memory leaks and attempts to free nonallo-

cated memory in a program.

The muntrace() function disables the hook functions installed by mtrace(), so that tracing information is

no longer recorded for the memory-allocation functions. If no hook functions were successfully installed

by mtrace(), muntrace() does nothing.

When mtrace() is called, it checks the value of the environment variable MALLOC_TRACE, which

should contain the pathname of a file in which the tracing information is to be recorded. If the pathname is

successfully opened, it is truncated to zero length.

If MALLOC_TRACE is not set, or the pathname it specifies is invalid or not writable, then no hook func-

tions are installed, and mtrace() has no effect. In set-user-ID and set-group-ID programs, MAL-

LOC_TRACE is ignored, and mtrace() has no effect.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Unsafemtrace(), muntrace()

CONFORMING TO
These functions are GNU extensions.

NOTES
In normal usage, mtrace() is called once at the start of execution of a program, and muntrace() is never

called.

The tracing output produced after a call to mtrace() is textual, but not designed to be human readable. The

GNU C library provides a Perl script, mtrace(1), that interprets the trace log and produces human-readable

output. For best results, the traced program should be compiled with debugging enabled, so that line-num-

ber information is recorded in the executable.

The tracing performed by mtrace() incurs a performance penalty (if MALLOC_TRACE points to a valid,

writable pathname).

BUGS
The line-number information produced by mtrace(1) is not always precise: the line number references may

refer to the previous or following (nonblank) line of the source code.

EXAMPLE
The shell session below demonstrates the use of the mtrace() function and the mtrace(1) command in a

program that has memory leaks at two different locations. The demonstration uses the following program:

$ cat t_mtrace.c

#include <mcheck.h>

#include <stdlib.h>

#include <stdio.h>

int

main(int argc, char *argv[])

GNU 2017-09-15 1

MTRACE(3) Linux Programmer’s Manual MTRACE(3)

{

int j;

mtrace();

for (j = 0; j < 2; j++)

malloc(100); /* Never freed−−a memory leak */

calloc(16, 16); /* Never freed−−a memory leak */

exit(EXIT_SUCCESS);

}

When we run the program as follows, we see that mtrace() diagnosed memory leaks at two different loca-

tions in the program:

$ cc −g t_mtrace.c −o t_mtrace

$ export MALLOC_TRACE=/tmp/t

$./t_mtrace

$ mtrace ./t_mtrace $MALLOC_TRACE

Memory not freed:

Address Size Caller

0x084c9378 0x64 at /home/cecilia/t_mtrace.c:12

0x084c93e0 0x64 at /home/cecilia/t_mtrace.c:12

0x084c9448 0x100 at /home/cecilia/t_mtrace.c:16

The first two messages about unfreed memory correspond to the two malloc(3) calls inside the for loop.

The final message corresponds to the call to calloc(3) (which in turn calls malloc(3)).

SEE ALSO
mtrace(1), malloc(3), malloc_hook(3), mcheck(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

GNU 2017-09-15 2

