
PKCS8(1SSL) OpenSSL PKCS8(1SSL)

NAME
openssl−pkcs8, pkcs8 − PKCS#8 format private key conversion tool

SYNOPSIS
openssl pkcs8 [−help] [−topk8] [−inform PEM|DER] [−outform PEM|DER] [−in filename] [−passin
arg] [−out filename] [−passout arg] [−iter count] [−noiter] [−rand file...] [−writerand file] [−nocrypt]
[−traditional] [−v2 alg] [−v2prf alg] [−v1 alg] [−engine id] [−scrypt] [−scrypt_N N] [−scrypt_r r]

[−scrypt_p p]

DESCRIPTION
The pkcs8 command processes private keys in PKCS#8 format. It can handle both unencrypted PKCS#8

PrivateKeyInfo format and EncryptedPrivateKeyInfo format with a variety of PKCS#5 (v1.5 and v2.0) and

PKCS#12 algorithms.

OPTIONS
−help

Print out a usage message.

−topk8
Normally a PKCS#8 private key is expected on input and a private key will be written to the output

file. With the −topk8 option the situation is reversed: it reads a private key and writes a PKCS#8

format key.

−inform DER|PEM
This specifies the input format: see ‘‘KEY FORMATS’’ for more details. The default format is PEM.

−outform DER|PEM
This specifies the output format: see ‘‘KEY FORMATS’’ for more details. The default format is PEM.

−traditional
When this option is present and −topk8 is not a traditional format private key is written.

−in filename
This specifies the input filename to read a key from or standard input if this option is not specified. If

the key is encrypted a pass phrase will be prompted for.

−passin arg
The input file password source. For more information about the format of arg see the PASS PHRASE

ARGUMENTS section in openssl (1).

−out filename
This specifies the output filename to write a key to or standard output by default. If any encryption

options are set then a pass phrase will be prompted for. The output filename should not be the same as

the input filename.

−passout arg
The output file password source. For more information about the format of arg see the PASS PHRASE

ARGUMENTS section in openssl (1).

−iter count
When creating new PKCS#8 containers, use a given number of iterations on the password in deriving

the encryption key for the PKCS#8 output. High values increase the time required to brute-force a

PKCS#8 container.

−nocrypt
PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using an

appropriate password based encryption algorithm. With this option an unencrypted PrivateKeyInfo

structure is expected or output. This option does not encrypt private keys at all and should only be

used when absolutely necessary. Certain software such as some versions of Java code signing software

used unencrypted private keys.

1.1.1f 2023-02-06 1

PKCS8(1SSL) OpenSSL PKCS8(1SSL)

−rand file...
A file or files containing random data used to seed the random number generator. Multiple files can be

specified separated by an OS-dependent character. The separator is ; for MS-Windows, , for

OpenVMS, and : for all others.

[−writerand file]

Writes random data to the specified file upon exit. This can be used with a subsequent −rand flag.

−v2 alg
This option sets the PKCS#5 v2.0 algorithm.

The alg argument is the encryption algorithm to use, valid values include aes128, aes256 and des3. If

this option isn’t specified then aes256 is used.

−v2prf alg
This option sets the PRF algorithm to use with PKCS#5 v2.0. A typical value value would be

hmacWithSHA256. If this option isn’t set then the default for the cipher is used or

hmacWithSHA256 if there is no default.

Some implementations may not support custom PRF algorithms and may require the hmacWithSHA1
option to work.

−v1 alg
This option indicates a PKCS#5 v1.5 or PKCS#12 algorithm should be used. Some older

implementations may not support PKCS#5 v2.0 and may require this option. If not specified PKCS#5

v2.0 form is used.

−engine id
Specifying an engine (by its unique id string) will cause pkcs8 to attempt to obtain a functional

reference to the specified engine, thus initialising it if needed. The engine will then be set as the

default for all available algorithms.

−scrypt
Uses the scrypt algorithm for private key encryption using default parameters: currently N=16384,

r=8 and p=1 and AES in CBC mode with a 256 bit key. These parameters can be modified using the

−scrypt_N, −scrypt_r, −scrypt_p and −v2 options.

−scrypt_N N −scrypt_r r −scrypt_p p
Sets the scrypt N, r or p parameters.

KEY FORMATS
Various different formats are used by the pkcs8 utility. These are detailed below.

If a key is being converted from PKCS#8 form (i.e. the −topk8 option is not used) then the input file must

be in PKCS#8 format. An encrypted key is expected unless −nocrypt is included.

If −topk8 is not used and PEM mode is set the output file will be an unencrypted private key in PKCS#8

format. If the −traditional option is used then a traditional format private key is written instead.

If −topk8 is not used and DER mode is set the output file will be an unencrypted private key in traditional

DER format.

If −topk8 is used then any supported private key can be used for the input file in a format specified by

−inform. The output file will be encrypted PKCS#8 format using the specified encryption parameters

unless −nocrypt is included.

NOTES
By default, when converting a key to PKCS#8 format, PKCS#5 v2.0 using 256 bit AES with HMAC and

SHA256 is used.

Some older implementations do not support PKCS#5 v2.0 format and require the older PKCS#5 v1.5 form

instead, possibly also requiring insecure weak encryption algorithms such as 56 bit DES.

The encrypted form of a PEM encode PKCS#8 files uses the following headers and footers:

1.1.1f 2023-02-06 2

PKCS8(1SSL) OpenSSL PKCS8(1SSL)

−−−−−BEGIN ENCRYPTED PRIVATE KEY−−−−−

−−−−−END ENCRYPTED PRIVATE KEY−−−−−

The unencrypted form uses:

−−−−−BEGIN PRIVATE KEY−−−−−

−−−−−END PRIVATE KEY−−−−−

Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that those

encrypted using the traditional SSLeay compatible formats. So if additional security is considered

important the keys should be converted.

It is possible to write out DER encoded encrypted private keys in PKCS#8 format because the encryption

details are included at an ASN1 level whereas the traditional format includes them at a PEM level.

PKCS#5 v1.5 and PKCS#12 algorithms.
Various algorithms can be used with the −v1 command line option, including PKCS#5 v1.5 and PKCS#12.

These are described in more detail below.

PBE−MD2−DES PBE−MD5−DES

These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56 bits of

protection since they both use DES.

PBE−SHA1−RC2−64, PBE−MD2−RC2−64, PBE−MD5−RC2−64, PBE−SHA1−DES

These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the same

key derivation algorithm and are supported by some software. They are mentioned in PKCS#5 v2.0.

They use either 64 bit RC2 or 56 bit DES.

PBE−SHA1−RC4−128, PBE−SHA1−RC4−40, PBE−SHA1−3DES, PBE−SHA1−2DES, PBE−SHA1−RC2−128,

PBE−SHA1−RC2−40

These algorithms use the PKCS#12 password based encryption algorithm and allow strong encryption

algorithms like triple DES or 128 bit RC2 to be used.

EXAMPLES
Convert a private key to PKCS#8 format using default parameters (AES with 256 bit key and

hmacWithSHA256):

openssl pkcs8 −in key.pem −topk8 −out enckey.pem

Convert a private key to PKCS#8 unencrypted format:

openssl pkcs8 −in key.pem −topk8 −nocrypt −out enckey.pem

Convert a private key to PKCS#5 v2.0 format using triple DES:

openssl pkcs8 −in key.pem −topk8 −v2 des3 −out enckey.pem

Convert a private key to PKCS#5 v2.0 format using AES with 256 bits in CBC mode and

hmacWithSHA512 PRF:

openssl pkcs8 −in key.pem −topk8 −v2 aes−256−cbc −v2prf hmacWithSHA512 −out enckey.pem

Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm (DES):

openssl pkcs8 −in key.pem −topk8 −v1 PBE−MD5−DES −out enckey.pem

Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):

openssl pkcs8 −in key.pem −topk8 −out enckey.pem −v1 PBE−SHA1−3DES

Read a DER unencrypted PKCS#8 format private key:

openssl pkcs8 −inform DER −nocrypt −in key.der −out key.pem

Convert a private key from any PKCS#8 encrypted format to traditional format:

openssl pkcs8 −in pk8.pem −traditional −out key.pem

Convert a private key to PKCS#8 format, encrypting with AES−256 and with one million iterations of the

1.1.1f 2023-02-06 3

PKCS8(1SSL) OpenSSL PKCS8(1SSL)

password:

openssl pkcs8 −in key.pem −topk8 −v2 aes−256−cbc −iter 1000000 −out pk8.pem

STANDARDS
Test vectors from this PKCS#5 v2.0 implementation were posted to the pkcs-tng mailing list using triple

DES, DES and RC2 with high iteration counts, several people confirmed that they could decrypt the private

keys produced and Therefore it can be assumed that the PKCS#5 v2.0 implementation is reasonably

accurate at least as far as these algorithms are concerned.

The format of PKCS#8 DSA (and other) private keys is not well documented: it is hidden away in PKCS#11

v2.01, section 11.9. OpenSSL’s default DSA PKCS#8 private key format complies with this standard.

BUGS
There should be an option that prints out the encryption algorithm in use and other details such as the

iteration count.

SEE ALSO
dsa (1), rsa (1), genrsa (1), gendsa (1)

HISTORY
The −iter option was added in OpenSSL 1.1.0.

COPYRIGHT
Copyright 2000−2018 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with

the License. You can obtain a copy in the file LICENSE in the source distribution or at

<https://www.openssl.org/source/license.html>.

1.1.1f 2023-02-06 4

