
POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

NAME
posix_spawn, posix_spawnp − spawn a process

SYNOPSIS
#include <spawn.h>

int posix_spawn(pid_t * pid , const char *path,

const posix_spawn_file_actions_t * file_actions,

const posix_spawnattr_t *attrp,

char *const argv[], char *const envp[]);

int posix_spawnp(pid_t * pid , const char * file,

const posix_spawn_file_actions_t * file_actions,

const posix_spawnattr_t *attrp,

char *const argv[], char *const envp[]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions are used to create a new child process that executes a

specified file. These functions were specified by POSIX to provide a standardized method of creating new

processes on machines that lack the capability to support the fork(2) system call. These machines are gen-

erally small, embedded systems lacking MMU support.

The posix_spawn() and posix_spawnp() functions provide the functionality of a combined fork(2) and

exec(3), with some optional housekeeping steps in the child process before the exec(3). These functions

are not meant to replace the fork(2) and execve(2) system calls. In fact, they provide only a subset of the

functionality that can be achieved by using the system calls.

The only difference between posix_spawn() and posix_spawnp() is the manner in which they specify the

file to be executed by the child process. With posix_spawn(), the executable file is specified as a pathname

(which can be absolute or relative). With posix_spawnp(), the executable file is specified as a simple file-

name; the system searches for this file in the list of directories specified by PATH (in the same way as for

execvp(3)). For the remainder of this page, the discussion is phrased in terms of posix_spawn(), with the

understanding that posix_spawnp() differs only on the point just described.

The remaining arguments to these two functions are as follows:

* The pid argument points to a buffer that is used to return the process ID of the new child process.

* The file_actions argument points to a spawn file actions object that specifies file-related actions to be

performed in the child between the fork(2) and exec(3) steps. This object is initialized and populated

before the posix_spawn() call using posix_spawn_file_actions_init(3) and the posix_spawn_file_ac-

tions_*() functions.

* The attrp argument points to an attributes objects that specifies various attributes of the created child

process. This object is initialized and populated before the posix_spawn() call using posix_spaw-

nattr_init(3) and the posix_spawnattr_*() functions.

* The argv and envp arguments specify the argument list and environment for the program that is exe-

cuted in the child process, as for execve(2).

Below, the functions are described in terms of a three-step process: the fork() step, the pre-exec() step (exe-

cuted in the child), and the exec() step (executed in the child).

fork() step

The posix_spawn() function commences by calling fork(2), or possibly vfork(2) (see below).

The PID of the new child process is placed in *pid . The posix_spawn() function then returns control to the

parent process.

Subsequently, the parent can use one of the system calls described in wait(2) to check the status of the child

process. If the child fails in any of the housekeeping steps described below, or fails to execute the desired

file, it exits with a status of 127.

The child process is created using vfork(2) instead of fork(2) when either of the following is true:

GNU 2019-03-06 1



POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

* the spawn-flags element of the attributes object pointed to by attrp contains the GNU-specific flag

POSIX_SPAWN_USEVFORK; or

* file_actions is NULL and the spawn-flags element of the attributes object pointed to by attrp does not

contain POSIX_SPAWN_SETSIGMASK, POSIX_SPAWN_SETSIGDEF,

POSIX_SPAWN_SETSCHEDPARAM, POSIX_SPAWN_SETSCHEDULER,

POSIX_SPAWN_SETPGROUP, or POSIX_SPAWN_RESETIDS.

In other words, vfork(2) is used if the caller requests it, or if there is no cleanup expected in the child be-

fore it exec(3)s the requested file.

pre-exec() step: housekeeping

In between the fork(2) and the exec(3), a child process may need to perform a set of housekeeping actions.

The posix_spawn() and posix_spawnp() functions support a small, well-defined set of system tasks that

the child process can accomplish before it executes the executable file. These operations are controlled by

the attributes object pointed to by attrp and the file actions object pointed to by file_actions. In the child,

processing is done in the following sequence:

1. Process attribute actions: signal mask, signal default handlers, scheduling algorithm and parameters,

process group, and effective user and group IDs are changed as specified by the attributes object pointed

to by attrp.

2. File actions, as specified in the file_actions argument, are performed in the order that they were speci-

fied using calls to the posix_spawn_file_actions_add*() functions.

3. File descriptors with the FD_CLOEXEC flag set are closed.

All process attributes in the child, other than those affected by attributes specified in the object pointed to

by attrp and the file actions in the object pointed to by file_actions, will be affected as though the child was

created with fork(2) and it executed the program with execve(2).

The process attributes actions are defined by the attributes object pointed to by attrp. The spawn-flags at-

tribute (set using posix_spawnattr_setflags(3)) controls the general actions that occur, and other attributes

in the object specify values to be used during those actions.

The effects of the flags that may be specified in spawn-flags are as follows:

POSIX_SPAWN_SETSIGMASK

Set the signal mask to the signal set specified in the spawn-sigmask attribute of the object pointed

to by attrp. If the POSIX_SPAWN_SETSIGMASK flag is not set, then the child inherits the

parent’s signal mask.

POSIX_SPAWN_SETSIGDEF

Reset the disposition of all signals in the set specified in the spawn-sigdefault attribute of the ob-

ject pointed to by attrp to the default. For the treatment of the dispositions of signals not speci-

fied in the spawn-sigdefault attribute, or the treatment when POSIX_SPAWN_SETSIGDEF is

not specified, see execve(2).

POSIX_SPAWN_SETSCHEDPARAM

If this flag is set, and the POSIX_SPAWN_SETSCHEDULER flag is not set, then set the sched-

uling parameters to the parameters specified in the spawn-schedparam attribute of the object

pointed to by attrp.

POSIX_SPAWN_SETSCHEDULER

Set the scheduling policy algorithm and parameters of the child, as follows:

* The scheduling policy is set to the value specified in the spawn-schedpolicy attribute of the

object pointed to by attrp.

* The scheduling parameters are set to the value specified in the spawn-schedparam attribute of

the object pointed to by attrp (but see BUGS).

If the POSIX_SPAWN_SETSCHEDPARAM and POSIX_SPAWN_SETSCHEDPOLICY

flags are not specified, the child inherits the corresponding scheduling attributes from the parent.

GNU 2019-03-06 2



POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

POSIX_SPAWN_RESETIDS

If this flag is set, reset the effective UID and GID to the real UID and GID of the parent process.

If this flag is not set, then the child retains the effective UID and GID of the parent. In either

case, if the set-user-ID and set-group-ID permission bits are enabled on the executable file, their

effect will override the setting of the effective UID and GID (se execve(2)).

POSIX_SPAWN_SETPGROUP

Set the process group to the value specified in the spawn-pgroup attribute of the object pointed to

by attrp. If the spawn-pgroup attribute has the value 0, the child’s process group ID is made the

same as its process ID. If the POSIX_SPAWN_SETPGROUP flag is not set, the child inherits

the parent’s process group ID.

If attrp is NULL, then the default behaviors described above for each flag apply.

The file_actions argument specifies a sequence of file operations that are performed in the child process af-

ter the general processing described above, and before it performs the exec(3). If file_actions is NULL,

then no special action is taken, and standard exec(3) semantics apply--file descriptors open before the exec

remain open in the new process, except those for which the FD_CLOEXEC flag has been set. File locks

remain in place.

If file_actions is not NULL, then it contains an ordered set of requests to open(2), close(2), and dup2(2)

files. These requests are added to the file_actions by posix_spawn_file_actions_addopen(3),

posix_spawn_file_actions_addclose(3), and posix_spawn_file_actions_adddup2(3). The requested oper-

ations are performed in the order they were added to file_actions.

If any of the housekeeping actions fails (due to bogus values being passed or other reasons why signal han-

dling, process scheduling, process group ID functions, and file descriptor operations might fail), the child

process exits with exit value 127.

exec() step

Once the child has successfully forked and performed all requested pre-exec steps, the child runs the re-

quested executable.

The child process takes its environment from the envp argument, which is interpreted as if it had been

passed to execve(2). The arguments to the created process come from the argv argument, which is pro-

cessed as for execve(2).

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() place the PID of the child process in

pid , and return 0. If there is an error before or during the fork(2), then no child is created, the contents of

*pid are unspecified, and these functions return an error number as described below.

Even when these functions return a success status, the child process may still fail for a plethora of reasons

related to its pre-exec() initialization. In addition, the exec(3) may fail. In all of these cases, the child

process will exit with the exit value of 127.

ERRORS
The posix_spawn() and posix_spawnp() functions fail only in the case where the underlying fork(2) or

vfork(2) call fails; in these cases, these functions return an error number, which will be one of the errors

described for fork(2) or vfork(2).

In addition, these functions fail if:

ENOSYS

Function not supported on this system.

VERSIONS
The posix_spawn() and posix_spawnp() functions are available since glibc 2.2.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

GNU 2019-03-06 3



POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

NOTES
The housekeeping activities in the child are controlled by the objects pointed to by attrp (for non-file ac-

tions) and file_actions In POSIX parlance, the posix_spawnattr_t and posix_spawn_file_actions_t data

types are referred to as objects, and their elements are not specified by name. Portable programs should ini-

tialize these objects using only the POSIX-specified functions. (In other words, although these objects may

be implemented as structures containing fields, portable programs must avoid dependence on such imple-

mentation details.)

According to POSIX, it unspecified whether fork handlers established with pthread_atfork(3) are called

when posix_spawn() is invoked. On glibc, fork handlers are called only if the child is created using

fork(2).

There is no "posix_fspawn" function (i.e., a function that is to posix_spawn() as fexecve(3) is to ex-

ecve(2)). However, this functionality can be obtained by specifying the path argument as one of the files in

the caller’s /proc/self/fd directory.

BUGS
POSIX.1 says that when POSIX_SPAWN_SETSCHEDULER is specified in spawn-flags, then the

POSIX_SPAWN_SETSCHEDPARAM (if present) is ignored. However, before glibc 2.14, calls to

posix_spawn() failed with an error if POSIX_SPAWN_SETSCHEDULER was specified without also

specifying POSIX_SPAWN_SETSCHEDPARAM.

EXAMPLE
The program below demonstrates the use of various functions in the POSIX spawn API. The program ac-

cepts command-line attributes that can be used to create file actions and attributes objects. The remaining

command-line arguments are used as the executable name and command-line arguments of the program

that is executed in the child.

In the first run, the date(1) command is executed in the child, and the posix_spawn() call employs no file

actions or attributes objects.

$ ./a.out date

PID of child: 7634
Tue Feb 1 19:47:50 CEST 2011
Child status: exited, status=0

In the next run, the −c command-line option is used to create a file actions object that closes standard out-

put in the child. Consequently, date(1) fails when trying to perform output and exits with a status of 1.

$ ./a.out -c date

PID of child: 7636
date: write error: Bad file descriptor
Child status: exited, status=1

In the next run, the −s command-line option is used to create an attributes object that specifies that all

(blockable) signals in the child should be blocked. Consequently, trying to kill child with the default signal

sent by kill(1) (i.e., SIGTERM) fails, because that signal is blocked. Therefore, to kill the child,

SIGKILL is necessary (SIGKILL can’t be blocked).

$ ./a.out -s sleep 60 &

[1] 7637
$ PID of child: 7638

$ kill 7638

$ kill -KILL 7638

$ Child status: killed by signal 9
[1]+ Done ./a.out -s sleep 60

When we try to execute a nonexistent command in the child, the exec(3) fails and the child exits with a sta-

tus of 127.

$ ./a.out xxxxx

GNU 2019-03-06 4



POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

PID of child: 10190

Child status: exited, status=127

Program source

#include <spawn.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <wait.h>
#include <errno.h>

#define errExit(msg) do { perror(msg); \
exit(EXIT_FAILURE); } while (0)

#define errExitEN(en, msg) \
do { errno = en; perror(msg); \

exit(EXIT_FAILURE); } while (0)

char **environ;

int
main(int argc, char *argv[])
{

pid_t child_pid;
int s, opt, status;
sigset_t mask;
posix_spawnattr_t attr;
posix_spawnattr_t *attrp;
posix_spawn_file_actions_t file_actions;
posix_spawn_file_actions_t *file_actionsp;

/* Parse command−line options, which can be used to specify an
attributes object and file actions object for the child. */

attrp = NULL;
file_actionsp = NULL;

while ((opt = getopt(argc, argv, "sc")) != −1) {
switch (opt) {
case 'c': /* −c: close standard output in child */

/* Create a file actions object and add a "close"
action to it */

s = posix_spawn_file_actions_init(&file_actions);
if (s != 0)

errExitEN(s, "posix_spawn_file_actions_init");

s = posix_spawn_file_actions_addclose(&file_actions,
STDOUT_FILENO);

if (s != 0)
errExitEN(s, "posix_spawn_file_actions_addclose");

GNU 2019-03-06 5



POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

file_actionsp = &file_actions;
break;

case 's': /* −s: block all signals in child */

/* Create an attributes object and add a "set signal mask"
action to it */

s = posix_spawnattr_init(&attr);
if (s != 0)

errExitEN(s, "posix_spawnattr_init");
s = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETSIGMASK);
if (s != 0)

errExitEN(s, "posix_spawnattr_setflags");

sigfillset(&mask);
s = posix_spawnattr_setsigmask(&attr, &mask);
if (s != 0)

errExitEN(s, "posix_spawnattr_setsigmask");

attrp = &attr;
break;

}
}

/* Spawn the child. The name of the program to execute and the
command−line arguments are taken from the command−line arguments
of this program. The environment of the program execed in the
child is made the same as the parent's environment. */

s = posix_spawnp(&child_pid, argv[optind], file_actionsp, attrp,
&argv[optind], environ);

if (s != 0)
errExitEN(s, "posix_spawn");

/* Destroy any objects that we created earlier */

if (attrp != NULL) {
s = posix_spawnattr_destroy(attrp);
if (s != 0)

errExitEN(s, "posix_spawnattr_destroy");
}

if (file_actionsp != NULL) {
s = posix_spawn_file_actions_destroy(file_actionsp);
if (s != 0)

errExitEN(s, "posix_spawn_file_actions_destroy");
}

printf("PID of child: %ld\n", (long) child_pid);

/* Monitor status of the child until it terminates */

do {

GNU 2019-03-06 6



POSIX_SPAWN(3) Linux Programmer’s Manual POSIX_SPAWN(3)

s = waitpid(child_pid, &status, WUNTRACED | WCONTINUED);
if (s == −1)

errExit("waitpid");

printf("Child status: ");
if (WIFEXITED(status)) {

printf("exited, status=%d\n", WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {

printf("killed by signal %d\n", WTERMSIG(status));
} else if (WIFSTOPPED(status)) {

printf("stopped by signal %d\n", WSTOPSIG(status));
} else if (WIFCONTINUED(status)) {

printf("continued\n");
}

} while (!WIFEXITED(status) && !WIFSIGNALED(status));

exit(EXIT_SUCCESS);
}

SEE ALSO
close(2), dup2(2), execl(2), execlp(2), fork(2), open(2), sched_setparam(2), sched_setscheduler(2),

setpgid(2), setuid(2), sigaction(2), sigprocmask(2), posix_spawn_file_actions_addclose(3),

posix_spawn_file_actions_adddup2(3), posix_spawn_file_actions_addopen(3),

posix_spawn_file_actions_destroy(3), posix_spawn_file_actions_init(3), posix_spawnattr_destroy(3),

posix_spawnattr_getflags(3), posix_spawnattr_getpgroup(3), posix_spawnattr_getschedparam(3),

posix_spawnattr_getschedpolicy(3), posix_spawnattr_getsigdefault(3),

posix_spawnattr_getsigmask(3), posix_spawnattr_init(3), posix_spawnattr_setflags(3),

posix_spawnattr_setpgroup(3), posix_spawnattr_setschedparam(3),

posix_spawnattr_setschedpolicy(3), posix_spawnattr_setsigdefault(3),

posix_spawnattr_setsigmask(3), pthread_atfork(3), <spawn.h>, Base Definitions volume of

POSIX.1-2001, http://www.opengroup.org/unix/online.html

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

GNU 2019-03-06 7


