
POW(3) Linux Programmer’s Manual POW(3)

NAME
pow, powf, powl − power functions

SYNOPSIS
#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);

Link with −lm.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

powf(), powl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the value of x raised to the power of y.

RETURN VALUE
On success, these functions return the value of x to the power of y.

If x is a finite value less than 0, and y is a finite noninteger, a domain error occurs, and a NaN is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL, HUGE_VALF, or
HUGE_VALL, respectively, with the mathematically correct sign.

If result underflows, and is not representable, a range error occurs, and 0.0 is returned.

Except as specified below, if x or y is a NaN, the result is a NaN.

If x is +1, the result is 1.0 (even if y is a NaN).

If y is 0, the result is 1.0 (even if x is a NaN).

If x is +0 (−0), and y is an odd integer greater than 0, the result is +0 (−0).

If x is 0, and y greater than 0 and not an odd integer, the result is +0.

If x is −1, and y is positive infinity or negative infinity, the result is 1.0.

If the absolute value of x is less than 1, and y is negative infinity, the result is positive infinity.

If the absolute value of x is greater than 1, and y is negative infinity, the result is +0.

If the absolute value of x is less than 1, and y is positive infinity, the result is +0.

If the absolute value of x is greater than 1, and y is positive infinity, the result is positive infinity.

If x is negative infinity, and y is an odd integer less than 0, the result is −0.

If x is negative infinity, and y less than 0 and not an odd integer, the result is +0.

If x is negative infinity, and y is an odd integer greater than 0, the result is negative infinity.

If x is negative infinity, and y greater than 0 and not an odd integer, the result is positive infinity.

If x is positive infinity, and y less than 0, the result is +0.

If x is positive infinity, and y greater than 0, the result is positive infinity.

If x is +0 or −0, and y is an odd integer less than 0, a pole error occurs and HUGE_VAL, HUGE_VALF,
or HUGE_VALL, is returned, with the same sign as x.

If x is +0 or −0, and y is less than 0 and not an odd integer, a pole error occurs and +HUGE_VAL,
+HUGE_VALF, or +HUGE_VALL, is returned.

2017-09-15 1

POW(3) Linux Programmer’s Manual POW(3)

ERRORS
See math_error(7) for information on how to determine whether an error has occurred when calling these
functions.

The following errors can occur:

Domain error: x is negative, and y is a finite noninteger
errno is set to EDOM. An inv alid floating-point exception (FE_INVALID) is raised.

Pole error: x is zero, and y is negative
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point exception (FE_DI-

VBYZERO) is raised.

Range error: the result overflows
errno is set to ERANGE. An overflow floating-point exception (FE_OVERFLOW) is raised.

Range error: the result underflows
errno is set to ERANGE. An underflow floating-point exception (FE_UNDERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safepow(), powf(), powl()

CONFORMING TO
C99, POSIX.1-2001, POSIX.1-2008.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
On 64-bits, pow() may be more than 10,000 times slower for some (rare) inputs than for other nearby in-
puts. This affects only pow(), and not powf() nor powl().

In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the POSIX-mandated
ERANGE. Since version 2.10, glibc does the right thing.

If x is negative, then large negative or positive y values yield a NaN as the function result, with errno set to
EDOM, and an invalid (FE_INVALID) floating-point exception. For example, with pow(), one sees this
behavior when the absolute value of y is greater than about 9.223373e18.

In version 2.3.2 and earlier, when an overflow or underflow error occurs, glibc’s pow() generates a bogus
invalid floating-point exception (FE_INVALID) in addition to the overflow or underflow exception.

SEE ALSO
cbrt(3), cpow(3), sqrt(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

2017-09-15 2

