
PTHREAD_EXIT(3) Linux Programmer’s Manual PTHREAD_EXIT(3)

NAME
pthread_exit − terminate calling thread

SYNOPSIS
#include <pthread.h>

void pthread_exit(void *retval);

Compile and link with −pthread.

DESCRIPTION
The pthread_exit() function terminates the calling thread and returns a value via retval that (if the thread is

joinable) is available to another thread in the same process that calls pthread_join(3).

Any clean-up handlers established by pthread_cleanup_push(3) that have not yet been popped, are

popped (in the reverse of the order in which they were pushed) and executed. If the thread has any thread-

specific data, then, after the clean-up handlers have been executed, the corresponding destructor functions

are called, in an unspecified order.

When a thread terminates, process-shared resources (e.g., mutexes, condition variables, semaphores, and

file descriptors) are not released, and functions registered using atexit(3) are not called.

After the last thread in a process terminates, the process terminates as by calling exit(3) with an exit status

of zero; thus, process-shared resources are released and functions registered using atexit(3) are called.

RETURN VALUE
This function does not return to the caller.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safepthread_exit()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
Performing a return from the start function of any thread other than the main thread results in an implicit

call to pthread_exit(), using the function’s return value as the thread’s exit status.

To allow other threads to continue execution, the main thread should terminate by calling pthread_exit()

rather than exit(3).

The value pointed to by retval should not be located on the calling thread’s stack, since the contents of that

stack are undefined after the thread terminates.

BUGS
Currently, there are limitations in the kernel implementation logic for wait(2)ing on a stopped thread group

with a dead thread group leader. This can manifest in problems such as a locked terminal if a stop signal is

sent to a foreground process whose thread group leader has already called pthread_exit().

SEE ALSO
pthread_create(3), pthread_join(3), pthreads(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 1


