
READLINK(2) Linux Programmer’s Manual READLINK(2)

NAME
readlink, readlinkat − read value of a symbolic link

SYNOPSIS
#include <unistd.h>

ssize_t readlink(const char *pathname, char *buf , size_t bufsiz);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

ssize_t readlinkat(int dirfd , const char *pathname,

char *buf , size_t bufsiz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readlink():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* Glibc versions <= 2.19: */ _BSD_SOURCE

readlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
readlink() places the contents of the symbolic link pathname in the buffer buf , which has size bufsiz.
readlink() does not append a null byte to buf . It will (silently) truncate the contents (to a length of bufsiz

characters), in case the buffer is too small to hold all of the contents.

readlinkat()

The readlinkat() system call operates in exactly the same way as readlink(), except for the differences de-
scribed here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to by
the file descriptor dirfd (rather than relative to the current working directory of the calling process, as is
done by readlink() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted relative to
the current working directory of the calling process (like readlink()).

If pathname is absolute, then dirfd is ignored.

Since Linux 2.6.39, pathname can be an empty string, in which case the call operates on the symbolic link
referred to by dirfd (which should have been obtained using open(2) with the O_PATH and O_NOFOL-

LOW flags).

See openat(2) for an explanation of the need for readlinkat().

RETURN VALUE
On success, these calls return the number of bytes placed in buf . (If the returned value equals bufsiz, then
truncation may have occurred.) On error, −1 is returned and errno is set to indicate the error.

ERRORS
EACCES

Search permission is denied for a component of the path prefix. (See also path_resolution(7).)

EFAULT

buf extends outside the process’s allocated address space.

EINVAL

bufsiz is not positive.

Linux 2019-03-06 1

READLINK(2) Linux Programmer’s Manual READLINK(2)

EINVAL

The named file (i.e., the final filename component of pathname) is not a symbolic link.

EIO An I/O error occurred while reading from the filesystem.

ELOOP

Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG

A pathname, or a component of a pathname, was too long.

ENOENT

The named file does not exist.

ENOMEM

Insufficient kernel memory was available.

ENOTDIR

A component of the path prefix is not a directory.

The following additional errors can occur for readlinkat():

EBADF

dirfd is not a valid file descriptor.

ENOTDIR

pathname is relative and dirfd is a file descriptor referring to a file other than a directory.

VERSIONS
readlinkat() was added to Linux in kernel 2.6.16; library support was added to glibc in version 2.4.

CONFORMING TO
readlink(): 4.4BSD (readlink() first appeared in 4.2BSD), POSIX.1-2001, POSIX.1-2008.

readlinkat(): POSIX.1-2008.

NOTES
In versions of glibc up to and including glibc 2.4, the return type of readlink() was declared as int. Now a-
days, the return type is declared as ssize_t, as (newly) required in POSIX.1-2001.

Using a statically sized buffer might not provide enough room for the symbolic link contents. The required
size for the buffer can be obtained from the stat.st_size value returned by a call to lstat(2) on the link.
However, the number of bytes written by readlink() and readlinkat() should be checked to make sure that
the size of the symbolic link did not increase between the calls. Dynamically allocating the buffer for read-

link() and readlinkat() also addresses a common portability problem when using PA TH_MAX for the buf-
fer size, as this constant is not guaranteed to be defined per POSIX if the system does not have such limit.

Glibc notes

On older kernels where readlinkat() is unavailable, the glibc wrapper function falls back to the use of
readlink(). When pathname is a relative pathname, glibc constructs a pathname based on the symbolic
link in /proc/self/fd that corresponds to the dirfd argument.

EXAMPLE
The following program allocates the buffer needed by readlink() dynamically from the information pro-
vided by lstat(2), falling back to a buffer of size PATH_MAX in cases where lstat(2) reports a size of zero.

#include <sys/types.h>

#include <sys/stat.h>

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int

main(int argc, char *argv[])

Linux 2019-03-06 2

READLINK(2) Linux Programmer’s Manual READLINK(2)

{

struct stat sb;

char *buf;

ssize_t nbytes, bufsiz;

if (argc != 2) {

fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);

exit(EXIT_FAILURE);

}

if (lstat(argv[1], &sb) == −1) {

perror("lstat");

exit(EXIT_FAILURE);

}

/* Add one to the link size, so that we can determine whether

the buffer returned by readlink() was truncated. */

bufsiz = sb.st_size + 1;

/* Some magic symlinks under (for example) /proc and /sys

report 'st_size' as zero. In that case, take PATH_MAX as

a "good enough" estimate. */

if (sb.st_size == 0)

bufsiz = PATH_MAX;

buf = malloc(bufsiz);

if (buf == NULL) {

perror("malloc");

exit(EXIT_FAILURE);

}

nbytes = readlink(argv[1], buf, bufsiz);

if (nbytes == −1) {

perror("readlink");

exit(EXIT_FAILURE);

}

printf("'%s' points to '%.*s'\n", argv[1], (int) nbytes, buf);

/* If the return value was equal to the buffer size, then the

the link target was larger than expected (perhaps because the

target was changed between the call to lstat() and the call to

readlink()). Warn the user that the returned target may have

been truncated. */

if (nbytes == bufsiz)

printf("(Returned buffer may have been truncated)\n");

free(buf);

exit(EXIT_SUCCESS);

}

Linux 2019-03-06 3

READLINK(2) Linux Programmer’s Manual READLINK(2)

SEE ALSO
readlink(1), lstat(2), stat(2), symlink(2), realpath(3), path_resolution(7), symlink(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 4

