
SETBUF(3) Linux Programmer’s Manual SETBUF(3)

NAME
setbuf, setbuffer, setlinebuf, setvbuf − stream buffering operations

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *stream, char *buf );

void setbuffer(FILE *stream, char *buf , size_t size);

void setlinebuf(FILE *stream);

int setvbuf(FILE *stream, char *buf , int mode, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setbuffer(), setlinebuf():

Since glibc 2.19:

_DEFAULT_SOURCE

Glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When an output

stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is

block buffered many characters are saved up and written as a block; when it is line buffered characters are

saved up until a newline is output or input is read from any stream attached to a terminal device (typically

stdin). The function fflush(3) may be used to force the block out early. (See fclose(3).)

Normally all files are block buffered. If a stream refers to a terminal (as stdout normally does), it is line

buffered. The standard error stream stderr is always unbuffered by default.

The setvbuf() function may be used on any open stream to change its buffer. The mode argument must be

one of the following three macros:

_IONBF

unbuffered

_IOLBF

line buffered

_IOFBF

fully buffered

Except for unbuffered files, the buf argument should point to a buffer at least size bytes long; this buffer

will be used instead of the current buffer. If the argument buf is NULL, only the mode is affected; a new

buffer will be allocated on the next read or write operation. The setvbuf() function may be used only after

opening a stream and before any other operations have been performed on it.

The other three calls are, in effect, simply aliases for calls to setvbuf(). The setbuf() function is exactly

equivalent to the call

setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

The setbuffer() function is the same, except that the size of the buffer is up to the caller, rather than being

determined by the default BUFSIZ. The setlinebuf() function is exactly equivalent to the call:

setvbuf(stream, NULL, _IOLBF, 0);

RETURN VALUE
The function setvbuf() returns 0 on success. It returns nonzero on failure (mode is invalid or the request

cannot be honored). It may set errno on failure.

The other functions do not return a value.

Linux 2019-03-06 1



SETBUF(3) Linux Programmer’s Manual SETBUF(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safesetbuf(), setbuffer(),

setlinebuf(), setvbuf()

CONFORMING TO
The setbuf() and setvbuf() functions conform to C89 and C99.

BUGS
You must make sure that the space that buf points to still exists by the time stream is closed, which also

happens at program termination. For example, the following is invalid:

#include <stdio.h>

int

main(void)

{

char buf[BUFSIZ];

setbuf(stdin, buf);

printf("Hello, world!\n");

return 0;

}

SEE ALSO
stdbuf(1), fclose(3), fflush(3), fopen(3), fread(3), malloc(3), printf(3), puts(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 2


