
SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

NAME
snmpd.examples - example configuration for the Net-SNMP agent

DESCRIPTION
The snmpd.conf(5) man page defines the syntax and behaviour of the various configuration directives that

can be used to control the operation of the Net-SNMP agent, and the management information it provides.

This companion man page illustrates these directives, showing some practical examples of how they might

be used.

AGENT BEHAVIOUR
Listening addresses

The default agent behaviour (listing on the standard SNMP UDP port on all interfaces) is equivalent to the

directive:

agentaddress udp:161

or simply

agentaddress 161

The agent can be configured to only accept requests sent to the local loopback interface (again listening on

the SNMP UDP port), using:

agentaddress localhost:161 # (udp implicit)

or

agentaddress 127.0.0.1 # (udp and standard port implicit)

It can be configured to accept both UDP and TCP requests (over both IPv4 and IPv6), using:

agentaddress udp:161,tcp:161,udp6:161,tcp6:161

Other combinations are also valid.

Run-time privileges

The agent can be configured to relinquish any privileged access once it has opened the initial listening

ports. Given a suitable "snmp" group (defined in /etc/group), this could be done using the directives:

agentuser nobody

agentgroup snmp

A similar effect could be achieved using numeric UID and/or GID values:

agentuser #10

agentgroup #10

SNMPv3 Configuration

Rather than being generated pseudo-randomly, the engine ID for the agent could be calculated based on the

MAC address of the second network interface (eth1), using the directives:

engineIDType 3 engineIDNic eth1

or it could be calculated from the (first) IP address, using:

engineIDType 1

or it could be specified explicitly, using:

engineID "XXX - WHAT FORMAT"

ACCESS CONTROL
SNMPv3 Users

The following directives will create three users, all using exactly the same authentication and encryption

settings:

createUser me MD5 "single pass phrase"

createUser myself MD5 "single pass phrase" DES

createUser andI MD5 "single pass phrase" DES "single pass phrase"

Note that this defines three distinct users, who could be granted different levels of access. Changing the

passphrase for any one of these would not affect the other two.

Separate pass phrases can be specified for authentication and encryption:

createUser onering SHA "to rule them all" AES "to bind them"

Remember that these createUser directives should be defined in the /var/lib/snmp/snmpd.conf file, rather

than the usual location.

V5.8 13 Oct 2006 1

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

Traditional Access Control

The SNMPv3 users defined above can be granted access to the full MIB tree using the directives:

rouser me

rwuser onering

Or selective access to individual subtrees using:

rouser myself .1.3.6.1.2

rwuser andI system

Note that a combination repeating the same user, such as:

rouser onering

rwuser onering

should not be used. This would configure the user onering with read-only access (and ignore the rwuser en-

try altogether). The same holds for the community-based directives.

The directives:

rocommunity public

rwcommunity private

would define the commonly-expected read and write community strings for SNMPv1 and SNMPv2c re-

quests. This behaviour is not configured by default, and would need to be set up explicitly.

Note: It would also be a very good idea to change private to something a little less predictable!

A slightly less vulnerable configuration might restrict what information could be retrieved:

rocommunity public default system

or the management systems that settings could be manipulated from:

rwcommunity private 10.10.10.0/24

or a combination of the two.

VA CM Configuration

This last pair of settings are equivalent to the full VACM definitions:

sec.name source community

com2sec public default public

com2sec mynet 10.10.10.0/24 private

com2sec6 mynet fec0::/64 private

sec.model sec.name

group worldGroup v1 public

group worldGroup v2c public

group myGroup v1 mynet

group myGroup v2c mynet

incl/excl subtree [mask]

view all included .1

view sysView included system

context model level prefix read write notify (unused)

access worldGroup "" any noauth exact system none none

access myGroup "" any noauth exact all all none

There are several points to note in this example:

The group directives must be repeated for both SNMPv1 and SNMPv2c requests.

The com2sec security name is distinct from the community string that is mapped to it. They can be the

same ("public") or different ("mynet"/"private") - but what appears in the group directive is the security

name, regardless of the original community string.

Both of the view directives are defining simple OID subtrees, so neither of these require an explicit mask.

The same holds for the "combined subtree2 view defined below. In fact, a mask field is only needed when

defining row slices across a table (or similar views), and can almost always be omitted.

V5.8 13 Oct 2006 2

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

In general, it is advisible not to mix traditional and VACM-based access configuration settings, as these can

sometimes interfere with each other in unexpected ways. Choose a particular style of access configuration,

and stick to it.

Typed-View Configuration

A similar configuration could also be configured as follows:

view sys2View included system

view sys2View included .1.3.6.1.2.1.25.1

authcommunity read public default −v sys2View

authcommunity read,write private 10.10.10.0/8

This mechanism allows multi-subtree (or other non-simple) views to be used with the one-line rocommunity

style of configuration.

It would also support configuring "write-only" access, should this be required.

SYSTEM INFORMATION
System Group

The full contents of the ’system’ group (with the exception of sysUpTime) can be explicitly configured

using:

Override ’uname −a’ and hardcoded system OID - inherently read-only values

sysDescr Universal Turing Machine mk I

sysObjectID .1.3.6.1.4.1.8072.3.2.1066

Override default values from ’configure’ - makes these objects read-only

sysContact Alan.Turing@pre−cs.man.ac.uk

sysName tortoise.turing.com

sysLocation An idea in the mind of AT

Standard end-host behaviour

sysServices 72

Host Resources Group

The list of devices probed for potential inclusion in the hrDiskStorageTable (and hrDevic-

eTable) can be amended using any of the following directives:

ignoredisk /dev/rdsk/c0t2d0

which prevents the device /dev/rdsk/c0t2d0 from being scanned,

ignoredisk /dev/rdsk/c0t[!6]d0

ignoredisk /dev/rdsk/c0t[0−57−9a−f]d0

either of which prevents all devices /dev/rdsk/c0tXd0 (except .../c0t6d0) from being scanned,

ignoredisk /dev/rdsk/c1*

which prevents all devices whose device names start with /dev/rdsk/c1 from being scanned, or

ignoredisk /dev/rdsk/c?t0d0

which prevents all devices /dev/rdsk/cXt0d0 (where ’X’ is any single character) from being scanned.

Process Monitoring

The list of services running on a system can be monitored (and provision made for correcting any prob-

lems), using:

At least one web server process must be running at all times

proc httpd

procfix httpd /etc/rc.d/init.d/httpd restart

There should never be more than 10 mail processes running

(more implies a probable mail storm, so shut down the mail system)

proc sendmail 10

procfix sendmail /etc/rc.d/init.d/sendmail stop

V5.8 13 Oct 2006 3

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

There should be a single network management agent running

("There can be only one")

proc snmpd 1 1

Also see the "DisMan Event MIB" section later on.

Disk Usage Monitoring

The state of disk storage can be monitored using:

includeAllDisks 10%

disk /var 20%

disk /usr 3%

Keep 100 MB free for crash dumps

disk /mnt/crash 100000

System Load Monitoring

A simple check for an overloaded system might be:

load 10

A more refined check (to allow brief periods of heavy use, but recognise sustained medium-heavy load)

might be:

load 30 10 5

Log File Monitoring

TODO

file FILE [MAXSIZE]

logmatch NAME PATH CYCLETIME REGEX

ACTIVE MONITORING
Notification Handling

Configuring the agent to report invalid access attempts might be done by:

authtrapenable 1

trapcommunity public

trap2sink localhost

Alternatively, the second and third directives could be combined (and an acknowledgement requested) us-

ing:

informsink localhost public

A configuration with repeated sink destinations, such as:

trapsink localhost

trap2sink localhost

informsink localhost

should NOT be used, as this will cause multiple copies of each trap to be sent to the same trap receiver.

TODO - discuss SNMPv3 traps

trapsess snmpv3 options localhost:162

TODO - mention trapd access configuration

DisMan Event MIB

The simplest configuration for active self-monitoring of the agent, by the agent, for the agent, is probably:

Set up the credentials to retrieve monitored values

createUser _internal MD5 "the first sign of madness"

iquerySecName _internal

rouser _internal

Active the standard monitoring entries

defaultMonitors yes

linkUpDownNotifications yes

If there’s a problem, then tell someone!

trap2sink localhost

V5.8 13 Oct 2006 4

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

The first block sets up a suitable user for retrieving the information to by monitored, while the following

pair of directives activates various built-in monitoring entries.

Note that the DisMan directives are not themselves sufficient to actively report problems - there also needs

to be a suitable destination configured to actually send the resulting notifications to.

A more detailed monitor example is given by:

monitor −u me −o hrSWRunName "high process memory" hrSWRunPerfMem > 10000

This defines an explicit boolean monitor entry, looking for any process using more than 10MB of active

memory. Such processes will be reported using the (standard) DisMan trap mteTriggerFired, but

adding an extra (wildcarded) varbind hrSWRunName.

This entry also specifies an explicit user (me, as defined earlier) for retrieving the monitored values, and

building the trap.

Objects that could potentially fluctuate around the specified level are better monitored using a threshold

monitor entry:

monitor −D −r 10 "network traffic" ifInOctets 1000000 5000000

This will send a mteTriggerRising trap whenever the incoming traffic rises above (roughly) 500 kB/s

on any network interface, and a corresponding mteTriggerFalling trap when it falls below 100 kB/s

again.

Note that this monitors the deltas between successive samples (−D) rather than the actual sample values

themselves. The same effect could be obtained using:

monitor −r 10 "network traffic" ifInOctets − − 1000000 5000000

The linkUpDownNotifications directive above is broadly equivalent to:

notificationEvent linkUpTrap linkUp ifIndex ifAdminStatus ifOperStatus

notificationEvent linkDownTrap linkDown ifIndex ifAdminStatus ifOperStatus

monitor −r 60 −e linkUpTrap "Generate linkUp" ifOperStatus != 2

monitor −r 60 −e linkDownTrap "Generate linkDown" ifOperStatus == 2

This defines the traps to be sent (using notificationEvent), and explicitly references the relevant notification

in the corresponding monitor entry (rather than using the default DisMan traps).

The defaultMonitors directive above is equivalent to a series of (boolean) monitor entries:

monitor −o prNames −o prErrMessage "procTable" prErrorFlag != 0

monitor −o memErrorName −o memSwapErrorMsg "memory" memSwapError != 0

monitor −o extNames −o extOutput "extTable" extResult != 0

monitor −o dskPath −o dskErrorMsg "dskTable" dskErrorFlag != 0

monitor −o laNames −o laErrMessage "laTable" laErrorFlag != 0

monitor −o fileName −o fileErrorMsg "fileTable" fileErrorFlag != 0

and will send a trap whenever any of these entries indicate a problem.

An alternative approach would be to automatically invoke the corresponding "fix" action:

setEvent prFixIt prErrFix = 1

monitor −e prFixIt "procTable" prErrorFlag != 0

(and similarly for any of the other defaultMonitor entries).

DisMan Schedule MIB

The agent could be configured to reload its configuration once an hour, using:

repeat 3600 versionUpdateConfig.0 = 1

Alternatively this could be configured to be run at specific times of day (perhaps following rotation of the

logs):

cron 10 0 * * * versionUpdateConfig.0 = 1

The one-shot style of scheduling is rather less common, but the secret SNMP virus could be activated on

the next occurance of Friday 13th using:

at 13 13 13 * 5 snmpVirus.0 = 1

V5.8 13 Oct 2006 5

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

EXTENDING AGENT FUNCTIONALITY
Arbitrary Extension Commands

Old Style

exec [MIBOID] NAME PROG ARGS"

sh [MIBOID] NAME PROG ARGS"

execfix NAME PROG ARGS"

New Style

extend [MIBOID] NAME PROG ARGS"

extendfix [MIBOID] NAME PROG ARGS"

MIB-Specific Extension Commands

One-Shot

"pass [−p priority] MIBOID PROG"

Persistent

"pass_persist [−p priority] MIBOID PROG"

Embedded Perl Support

If embedded perl support is enabled in the agent, the default initialisation is equivalent to the directives:

disablePerl false

perlInitFile /usr/share/snmp/snmp_perl.pl

The main mechanism for defining embedded perl scripts is the perl directive. A very simple (if somewhat

pointless) MIB handler could be registered using:

perl use Data::Dumper;

perl sub myroutine { print "got called: ",Dumper(@_),"\n"; }

perl $agent−>register(’mylink’, ’.1.3.6.1.8765’, \&myroutine);

This relies on the $agent object, defined in the example snmp_perl.pl file.

A more realistic MIB handler might be:

XXX - WHAT ???

Alternatively, this code could be stored in an external file, and loaded using:

perl ’do /usr/share/snmp/perl_example.pl’;

Dynamically Loadable Modules

TODO

dlmod NAME PATH"

Proxy Support

A configuration for acting as a simple proxy for two other SNMP agents (running on remote systems)

might be:

com2sec −Cn rem1context rem1user default remotehost1

com2sec −Cn rem2context rem2user default remotehost2

proxy −Cn rem1context −v 1 -c public remotehost1 .1.3

proxy −Cn rem2context −v 1 -c public remotehost2 .1.3

(plus suitable access control entries).

The same proxy directives would also work with (incoming) SNMPv3 requests, which can specify a context

directly. It would probably be more sensible to use contexts of remotehost1 and remotehost2 - the names

above were chosen to indicate how these directives work together.

Note that the administrative settings for the proxied request are specified explicitly, and are independent of

the settings from the incoming request.

An alternative use for the proxy directive is to pass part of the OID tree to another agent (either on a remote

host or listening on a different port on the same system), while handling the rest internally:

proxy −v 1 −c public localhost:6161 .1.3.6.1.4.1.99

This mechanism can be used to link together two separate SNMP agents.

A less usual approach is to map one subtree into a different area of the overall MIB tree (either locally or on

V5.8 13 Oct 2006 6

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

a remote system):

uses SNMPv3 to access the MIB tree .1.3.6.1.2.1.1 on ’remotehost’

and maps this to the local tree .1.3.6.1.3.10

proxy −v 3 −l noAuthNoPriv −u user remotehost .1.3.6.1.3.10 .1.3.6.1.2.1.1

SMUX Sub-Agents

smuxsocket 127.0.0.1

smuxpeer .1.3.6.1.2.1.14 ospf_pass

AgentX Sub-Agents

The Net-SNMP agent could be configured to operate as an AgentX master agent (listening on a non-stan-

dard named socket, and running using the access privileges defined earlier), using:

master agentx

agentXSocket /tmp/agentx/master

agentXPerms 0660 0550 nobody snmp

A sub-agent wishing to connect to this master agent would need the same agentXSocket directive, or the

equivalent code:

netsnmp_ds_set_string(NETSNMP_DS_APPLICATION_ID, NETSNMP_DS_AGENT_X_SOCKET,

"/tmp/agentx/master");

A loopback networked AgentX configuration could be set up using:

agentXSocket tcp:localhost:705

agentXTimeout 5

agentXRetries 2

on the master side, and:

agentXSocket tcp:localhost:705

agentXTimeout 10

agentXRetries 1

agentXPingInterval 600

on the client.

Note that the timeout and retry settings can be asymmetric for the two directions, and the sub-agent can poll

the master agent at regular intervals (600s = every 10 minutes), to ensure the connection is still working.

OTHER CONFIGURATION
override sysDescr.0 octet_str "my own sysDescr"

injectHandler stash_cache NAME table_iterator

FILES
/etc/snmp/snmpd.conf

SEE ALSO
snmpconf(1), snmpd.conf(5), snmp.conf(5), snmp_config(5), snmpd(8), EXAMPLE.conf, netsnmp_con-

fig_api(3).

V5.8 13 Oct 2006 7

