
SOCKET(2) Linux Programmer’s Manual SOCKET(2)

NAME
socket − create an endpoint for communication

SYNOPSIS
#include <sys/types.h> /* See NOTES */

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a file descriptor that refers to that endpoint.

The file descriptor returned by a successful call will be the lowest-numbered file descriptor not currently

open for the process.

The domain argument specifies a communication domain; this selects the protocol family which will be

used for communication. These families are defined in <sys/socket.h>. The formats currently understood

by the Linux kernel include:

Name Purpose Man page

AF_UNIX Local communication unix(7)

AF_LOCAL Synonym for AF_UNIX

IPv4 Internet protocolsAF_INET ip(7)

AF_AX25 Amateur radio AX.25 protocol ax25(4)

IPX − Novell protocolsAF_IPX

AppleTalkAF_APPLETALK ddp(7)

ITU-T X.25 / ISO-8208 protocolAF_X25 x25(7)

IPv6 Internet protocolsAF_INET6 ipv6(7)

AF_DECnet DECet protocol sockets

AF_KEY Ke y management protocol, originally developed

for usage with IPsec

AF_NETLINK Kernel user interface device netlink(7)

AF_PACKET Low-level packet interface packet(7)

AF_RDS Reliable Datagram Sockets (RDS) protocol rds(7)

rds-rdma(7)

AF_PPPOX Generic PPP transport layer, for setting up L2

tunnels (L2TP and PPPoE)

AF_LLC Logical link control (IEEE 802.2 LLC) protocol

AF_IB InfiniBand native addressing

AF_MPLS Multiprotocol Label Switching

AF_CAN Controller Area Network automotive bus protocol

AF_TIPC TIPC, "cluster domain sockets" protocol

AF_BLUETOOTH Bluetooth low-level socket protocol

AF_ALG Interface to kernel crypto API

AF_VSOCK VSOCK (originally "VMWare VSockets") proto-

col for hypervisor-guest communication

vsock(7)

AF_KCM KCM (kernel connection multiplexor) interface

AF_XDP XDP (express data path) interface

Further details of the above address families, as well as information on several other address families, can

be found in address_families(7).

The socket has the indicated type, which specifies the communication semantics. Currently defined types

are:

SOCK_STREAM

Provides sequenced, reliable, two-way, connection-based byte streams. An out-of-band

data transmission mechanism may be supported.

SOCK_DGRAM Supports datagrams (connectionless, unreliable messages of a fixed maximum length).

Linux 2019-03-06 1



SOCKET(2) Linux Programmer’s Manual SOCKET(2)

SOCK_SEQPACKET

Provides a sequenced, reliable, two-way connection-based data transmission path for

datagrams of fixed maximum length; a consumer is required to read an entire packet

with each input system call.

SOCK_RAW Provides raw network protocol access.

SOCK_RDM Provides a reliable datagram layer that does not guarantee ordering.

SOCK_PACKET Obsolete and should not be used in new programs; see packet(7).

Some socket types may not be implemented by all protocol families.

Since Linux 2.6.27, the type argument serves a second purpose: in addition to specifying a socket type, it

may include the bitwise OR of any of the following values, to modify the behavior of socket():

SOCK_NONBLOCK

Set the O_NONBLOCK file status flag on the open file description (see open(2)) re-

ferred to by the new file descriptor. Using this flag saves extra calls to fcntl(2) to

achieve the same result.

SOCK_CLOEXEC

Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the de-

scription of the O_CLOEXEC flag in open(2) for reasons why this may be useful.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol ex-

ists to support a particular socket type within a given protocol family, in which case protocol can be speci-

fied as 0. However, it is possible that many protocols may exist, in which case a particular protocol must be

specified in this manner. The protocol number to use is specific to the “communication domain” in which

communication is to take place; see protocols(5). See getprotoent(3) on how to map protocol name

strings to protocol numbers.

Sockets of type SOCK_STREAM are full-duplex byte streams. They do not preserve record boundaries.

A stream socket must be in a connected state before any data may be sent or received on it. A connection

to another socket is created with a connect(2) call. Once connected, data may be transferred using read(2)

and write(2) calls or some variant of the send(2) and recv(2) calls. When a session has been completed a

close(2) may be performed. Out-of-band data may also be transmitted as described in send(2) and received

as described in recv(2).

The communications protocols which implement a SOCK_STREAM ensure that data is not lost or dupli-

cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted

within a reasonable length of time, then the connection is considered to be dead. When SO_KEEPALIVE

is enabled on the socket the protocol checks in a protocol-specific manner if the other end is still alive. A

SIGPIPE signal is raised if a process sends or receives on a broken stream; this causes naive processes,

which do not handle the signal, to exit. SOCK_SEQPACKET sockets employ the same system calls as

SOCK_STREAM sockets. The only difference is that read(2) calls will return only the amount of data re-

quested, and any data remaining in the arriving packet will be discarded. Also all message boundaries in

incoming datagrams are preserved.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in

sendto(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram

along with the address of its sender.

SOCK_PACKET is an obsolete socket type to receive raw packets directly from the device driver. Use

packet(7) instead.

An fcntl(2) F_SETOWN operation can be used to specify a process or process group to receive a SIG-

URG signal when the out-of-band data arrives or SIGPIPE signal when a SOCK_STREAM connection

breaks unexpectedly. This operation may also be used to set the process or process group that receives the

I/O and asynchronous notification of I/O events via SIGIO. Using F_SETOWN is equivalent to an

ioctl(2) call with the FIOSETOWN or SIOCSPGRP argument.

When the network signals an error condition to the protocol module (e.g., using an ICMP message for IP)

Linux 2019-03-06 2



SOCKET(2) Linux Programmer’s Manual SOCKET(2)

the pending error flag is set for the socket. The next operation on this socket will return the error code of

the pending error. For some protocols it is possible to enable a per-socket error queue to retrieve detailed

information about the error; see IP_RECVERR in ip(7).

The operation of sockets is controlled by socket level options. These options are defined in <sys/socket.h>.

The functions setsockopt(2) and getsockopt(2) are used to set and get options.

RETURN VALUE
On success, a file descriptor for the new socket is returned. On error, −1 is returned, and errno is set appro-

priately.

ERRORS
EACCES

Permission to create a socket of the specified type and/or protocol is denied.

EAFNOSUPPORT

The implementation does not support the specified address family.

EINVAL

Unknown protocol, or protocol family not available.

EINVAL

Invalid flags in type.

EMFILE

The per-process limit on the number of open file descriptors has been reached.

ENFILE

The system-wide limit on the total number of open files has been reached.

ENOBUFS or ENOMEM

Insufficient memory is available. The socket cannot be created until sufficient resources are freed.

EPROT ONOSUPPORT

The protocol type or the specified protocol is not supported within this domain.

Other errors may be generated by the underlying protocol modules.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, 4.4BSD.

The SOCK_NONBLOCK and SOCK_CLOEXEC flags are Linux-specific.

socket() appeared in 4.2BSD. It is generally portable to/from non-BSD systems supporting clones of the

BSD socket layer (including System V variants).

NOTES
POSIX.1 does not require the inclusion of <sys/types.h>, and this header file is not required on Linux.

However, some historical (BSD) implementations required this header file, and portable applications are

probably wise to include it.

The manifest constants used under 4.x BSD for protocol families are PF_UNIX, PF_INET, and so on,

while AF_UNIX, AF_INET, and so on are used for address families. However, already the BSD man page

promises: "The protocol family generally is the same as the address family", and subsequent standards use

AF_* everywhere.

EXAMPLE
An example of the use of socket() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), close(2), connect(2), fcntl(2), getpeername(2), getsockname(2), getsockopt(2),

ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2), getpro-

toent(3), address_families(7), ip(7), socket(7), tcp(7), udp(7), unix(7)

“An Introductory 4.3BSD Interprocess Communication Tutorial” and “BSD Interprocess Communication

Tutorial”, reprinted in UNIX Programmer’s Supplementary Documents Volume 1.

Linux 2019-03-06 3



SOCKET(2) Linux Programmer’s Manual SOCKET(2)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 4


