
STATX(2) Linux Programmer’s Manual STATX(2)

NAME
statx − get file status (extended)

SYNOPSIS
#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <fcntl.h> /* Definition of AT_* constants */

int statx(int dirfd , const char *pathname, int flags,

unsigned int mask, struct statx *statxbuf );

DESCRIPTION
This function returns information about a file, storing it in the buffer pointed to by statxbuf . The returned

buffer is a structure of the following type:

struct statx {

__u32 stx_mask; /* Mask of bits indicating

filled fields */

__u32 stx_blksize; /* Block size for filesystem I/O */

__u64 stx_attributes; /* Extra file attribute indicators */

__u32 stx_nlink; /* Number of hard links */

__u32 stx_uid; /* User ID of owner */

__u32 stx_gid; /* Group ID of owner */

__u16 stx_mode; /* File type and mode */

__u64 stx_ino; /* Inode number */

__u64 stx_size; /* Total size in bytes */

__u64 stx_blocks; /* Number of 512B blocks allocated */

__u64 stx_attributes_mask;

/* Mask to show what’s supported

in stx_attributes */

/* The following fields are file timestamps */

struct statx_timestamp stx_atime; /* Last access */

struct statx_timestamp stx_btime; /* Creation */

struct statx_timestamp stx_ctime; /* Last status change */

struct statx_timestamp stx_mtime; /* Last modification */

/* If this file represents a device, then the next two

fields contain the ID of the device */

__u32 stx_rdev_major; /* Major ID */

__u32 stx_rdev_minor; /* Minor ID */

/* The next two fields contain the ID of the device

containing the filesystem where the file resides */

__u32 stx_dev_major; /* Major ID */

__u32 stx_dev_minor; /* Minor ID */

};

The file timestamps are structures of the following type:

struct statx_timestamp {

__s64 tv_sec; /* Seconds since the Epoch (UNIX time) */

__u32 tv_nsec; /* Nanoseconds since tv_sec */

};

(Note that reserved space and padding is omitted.)

Linux 2019-10-10 1



STATX(2) Linux Programmer’s Manual STATX(2)

Invoking statx():

To access a file’s status, no permissions are required on the file itself, but in the case of statx() with a path-

name, execute (search) permission is required on all of the directories in pathname that lead to the file.

statx() uses pathname, dirfd , and flags to identify the target file in one of the following ways:

An absolute pathname

If pathname begins with a slash, then it is an absolute pathname that identifies the target file. In

this case, dirfd is ignored.

A relative pathname

If pathname is a string that begins with a character other than a slash and dirfd is AT_FDCWD,

then pathname is a relative pathname that is interpreted relative to the process’s current working

directory.

A directory-relative pathname

If pathname is a string that begins with a character other than a slash and dirfd is a file descriptor

that refers to a directory, then pathname is a relative pathname that is interpreted relative to the di-

rectory referred to by dirfd .

By file descriptor

If pathname is an empty string and the AT_EMPTY_PATH flag is specified in flags (see below),

then the target file is the one referred to by the file descriptor dirfd .

flags can be used to influence a pathname-based lookup. A value for flags is constructed by ORing to-

gether zero or more of the following constants:

AT_EMPTY_PATH

If pathname is an empty string, operate on the file referred to by dirfd (which may have been ob-

tained using the open(2) O_PATH flag). In this case, dirfd can refer to any type of file, not just a

directory.

If dirfd is AT_FDCWD, the call operates on the current working directory.

This flag is Linux-specific; define _GNU_SOURCE to obtain its definition.

AT_NO_AUTOMOUNT

Don’t automount the terminal ("basename") component of pathname if it is a directory that is an

automount point. This allows the caller to gather attributes of an automount point (rather than the

location it would mount). This flag can be used in tools that scan directories to prevent mass-auto-

mounting of a directory of automount points. The AT_NO_AUTOMOUNT flag has no effect if

the mount point has already been mounted over. This flag is Linux-specific; define

_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW

If pathname is a symbolic link, do not dereference it: instead return information about the link it-

self, like lstat(2).

flags can also be used to control what sort of synchronization the kernel will do when querying a file on a

remote filesystem. This is done by ORing in one of the following values:

AT_STATX_SYNC_AS_STAT

Do whatever stat(2) does. This is the default and is very much filesystem-specific.

AT_STATX_FORCE_SYNC

Force the attributes to be synchronized with the server. This may require that a network filesystem

perform a data writeback to get the timestamps correct.

AT_STATX_DONT_SYNC

Don’t synchronize anything, but rather just take whatever the system has cached if possible. This

may mean that the information returned is approximate, but, on a network filesystem, it may not

involve a round trip to the server - even if no lease is held.

The mask argument to statx() is used to tell the kernel which fields the caller is interested in. mask is an

Linux 2019-10-10 2



STATX(2) Linux Programmer’s Manual STATX(2)

ORed combination of the following constants:

STATX_TYPE Want stx_mode & S_IFMT

STATX_MODE Want stx_mode & ˜S_IFMT

STATX_NLINK Want stx_nlink

STATX_UID Want stx_uid

STATX_GID Want stx_gid

STATX_ATIME Want stx_atime

STATX_MTIME Want stx_mtime

STATX_CTIME Want stx_ctime

STATX_INO Want stx_ino

STATX_SIZE Want stx_size

STATX_BLOCKS Want stx_blocks

STATX_BASIC_STATS [All of the above]

STATX_BTIME Want stx_btime

STATX_ALL [All currently available fields]

Note that, in general, the kernel does not reject values in mask other than the above. (For an exception, see

EINVAL in errors.) Instead, it simply informs the caller which values are supported by this kernel and

filesystem via the statx.stx_mask field. Therefore, do not simply set mask to UINT_MAX (all bits set), as

one or more bits may, in the future, be used to specify an extension to the buffer.

The returned information

The status information for the target file is returned in the statx structure pointed to by statxbuf . Included

in this is stx_mask which indicates what other information has been returned. stx_mask has the same for-

mat as the mask argument and bits are set in it to indicate which fields have been filled in.

It should be noted that the kernel may return fields that weren’t requested and may fail to return fields that

were requested, depending on what the backing filesystem supports. (Fields that are given values despite

being unrequested can just be ignored.) In either case, stx_mask will not be equal mask.

If a filesystem does not support a field or if it has an unrepresentable value (for instance, a file with an ex-

otic type), then the mask bit corresponding to that field will be cleared in stx_mask ev en if the user asked

for it and a dummy value will be filled in for compatibility purposes if one is available (e.g., a dummy UID

and GID may be specified to mount under some circumstances).

A filesystem may also fill in fields that the caller didn’t ask for if it has values for them available and the in-

formation is available at no extra cost. If this happens, the corresponding bits will be set in stx_mask.

Note: for performance and simplicity reasons, different fields in the statx structure may contain state infor-

mation from different moments during the execution of the system call. For example, if stx_mode or

stx_uid is changed by another process by calling chmod(2) or chown(2), stat() might return the old

stx_mode together with the new stx_uid , or the old stx_uid together with the new stx_mode.

Apart from stx_mask (which is described above), the fields in the statx structure are:

stx_blksize

The "preferred" block size for efficient filesystem I/O. (Writing to a file in smaller chunks may

cause an inefficient read-modify-rewrite.)

stx_attributes

Further status information about the file (see below for more information).

stx_nlink

The number of hard links on a file.

stx_uid This field contains the user ID of the owner of the file.

stx_gid This field contains the ID of the group owner of the file.

stx_mode

The file type and mode. See inode(7) for details.

Linux 2019-10-10 3



STATX(2) Linux Programmer’s Manual STATX(2)

stx_ino The inode number of the file.

stx_size

The size of the file (if it is a regular file or a symbolic link) in bytes. The size of a symbolic link is

the length of the pathname it contains, without a terminating null byte.

stx_blocks

The number of blocks allocated to the file on the medium, in 512-byte units. (This may be smaller

than stx_size/512 when the file has holes.)

stx_attributes_mask

A mask indicating which bits in stx_attributes are supported by the VFS and the filesystem.

stx_atime

The file’s last access timestamp.

stx_btime

The file’s creation timestamp.

stx_ctime

The file’s last status change timestamp.

stx_mtime

The file’s last modification timestamp.

stx_dev_major and stx_dev_minor

The device on which this file (inode) resides.

stx_rdev_major and stx_rdev_minor

The device that this file (inode) represents if the file is of block or character device type.

For further information on the above fields, see inode(7).

File attributes

The stx_attributes field contains a set of ORed flags that indicate additional attributes of the file. Note that

any attribute that is not indicated as supported by stx_attributes_mask has no usable value here. The bits in

stx_attributes_mask correspond bit-by-bit to stx_attributes.

The flags are as follows:

STATX_ATTR_COMPRESSED

The file is compressed by the filesystem and may take extra resources to access.

STATX_ATTR_IMMUTABLE

The file cannot be modified: it cannot be deleted or renamed, no hard links can be created to this

file and no data can be written to it. See chattr(1).

STATX_ATTR_APPEND

The file can only be opened in append mode for writing. Random access writing is not permitted.

See chattr(1).

STATX_ATTR_NODUMP

File is not a candidate for backup when a backup program such as dump(8) is run. See chattr(1).

STATX_ATTR_ENCRYPTED

A key is required for the file to be encrypted by the filesystem.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of pathname. (See also

path_resolution(7).)

Linux 2019-10-10 4



STATX(2) Linux Programmer’s Manual STATX(2)

EBADF

dirfd is not a valid open file descriptor.

EFAULT

pathname or statxbuf is NULL or points to a location outside the process’s accessible address

space.

EINVAL

Invalid flag specified in flags.

EINVAL

Reserved flag specified in mask. (Currently, there is one such flag, designated by the constant

STATX__RESERVED, with the value 0x80000000U.)

ELOOP

Too many symbolic links encountered while traversing the pathname.

ENAMETOOLONG

pathname is too long.

ENOENT

A component of pathname does not exist, or pathname is an empty string and

AT_EMPTY_PATH was not specified in flags.

ENOMEM

Out of memory (i.e., kernel memory).

ENOTDIR

A component of the path prefix of pathname is not a directory or pathname is relative and dirfd is

a file descriptor referring to a file other than a directory.

VERSIONS
statx() was added to Linux in kernel 4.11; library support was added in glibc 2.28.

CONFORMING TO
statx() is Linux-specific.

SEE ALSO
ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), stat(2), utime(2), capabilities(7), inode(7),

symlink(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 5


