
SYSTEMD.TIMER(5) systemd.timer SYSTEMD.TIMER(5)

NAME
systemd.timer − Timer unit configuration

SYNOPSIS
timer.timer

DESCRIPTION
A unit configuration file whose name ends in ".timer" encodes information about a timer controlled and

supervised by systemd, for timer−based activation.

This man page lists the configuration options specific to this unit type. See systemd.unit(5) for the

common options of all unit configuration files. The common configuration items are configured in the

generic "[Unit]" and "[Install]" sections. The timer specific configuration options are configured in the

"[Timer]" section.

For each timer file, a matching unit file must exist, describing the unit to activate when the timer elapses.

By default, a service by the same name as the timer (except for the suffix) is activated. Example: a timer file

foo.timer activates a matching service foo.service. The unit to activate may be controlled by Unit= (see

below).

Note that in case the unit to activate is already active at the time the timer elapses it is not restarted, but

simply left running. There is no concept of spawning new service instances in this case. Due to this,

services with RemainAfterExit= set (which stay around continuously even after the service's main process

exited) are usually not suitable for activation via repetitive timers, as they will only be activated once, and

then stay around forever.

AUTOMATIC DEPENDENCIES
Implicit Dependencies

The following dependencies are implicitly added:

• Timer units automatically gain a Before= dependency on the service they are supposed to activate.

Default Dependencies

The following dependencies are added unless DefaultDependencies=no is set:

• Timer units will automatically have dependencies of type Requires= and After= on sysinit.target, a

dependency of type Before= on timers.target, as well as Conflicts= and Before= on shutdown.target

to ensure that they are stopped cleanly prior to system shutdown. Only timer units involved with

early boot or late system shutdown should disable the DefaultDependencies= option.

• Timer units with at least one OnCalendar= directive will have an additional After= dependency on

time−sync.target to avoid being started before the system clock has been correctly set.

OPTIONS
Timer files must include a [Timer] section, which carries information about the timer it defines. The options

specific to the [Timer] section of timer units are the following:

OnActiveSec=, OnBootSec=, OnStartupSec=, OnUnitActiveSec=, OnUnitInactiveSec=

Defines monotonic timers relative to different starting points:

Table 1. Settings and their starting points

systemd 245 1



SYSTEMD.TIMER(5) systemd.timer SYSTEMD.TIMER(5)

Setting Meaning

OnActiveSec= Defines a timer relative to the moment

the timer unit itself is activated.

OnBootSec= Defines a timer relative to when the

machine was booted up. In containers,

for the system manager instance, this

is mapped to OnStartupSec=, making

both equivalent.

OnStartupSec= Defines a timer relative to when the

service manager was first started. For

system timer units this is very similar

to OnBootSec= as the system service

manager is generally started very early

at boot. It's primarily useful when

configured in units running in the

per−user service manager, as the user

service manager is generally started on

first login only, not already during

boot.

OnUnitActiveSec= Defines a timer relative to when the

unit the timer unit is activating was

last activated.

OnUnitInactiveSec= Defines a timer relative to when the

unit the timer unit is activating was

last deactivated.

Multiple directives may be combined of the same and of different types, in which case the timer unit

will trigger whenever any of the specified timer expressions elapse. For example, by combining

OnBootSec= and OnUnitActiveSec=, it is possible to define a timer that elapses in regular intervals

and activates a specific service each time. Moreover, both monotonic time expressions and

OnCalendar= calendar expressions may be combined in the same timer unit.

The arguments to the directives are time spans configured in seconds. Example: "OnBootSec=50"

means 50s after boot−up. The argument may also include time units. Example: "OnBootSec=5h

30min" means 5 hours and 30 minutes after boot−up. For details about the syntax of time spans, see

systemd.time(7).

If a timer configured with OnBootSec= or OnStartupSec= is already in the past when the timer unit is

activated, it will immediately elapse and the configured unit is started. This is not the case for timers

defined in the other directives.

These are monotonic timers, independent of wall−clock time and timezones. If the computer is

temporarily suspended, the monotonic clock generally pauses, too. Note that if WakeSystem= is used,

a different monotonic clock is selected that continues to advance while the system is suspended and

thus can be used as the trigger to resume the system.

If the empty string is assigned to any of these options, the list of timers is reset (both monotonic timers

and OnCalendar= timers, see below), and all prior assignments will have no effect.

Note that timers do not necessarily expire at the precise time configured with these settings, as they are

subject to the AccuracySec= setting below.

OnCalendar=

Defines realtime (i.e. wallclock) timers with calendar event expressions. See systemd.time(7) for

systemd 245 2



SYSTEMD.TIMER(5) systemd.timer SYSTEMD.TIMER(5)

more information on the syntax of calendar event expressions. Otherwise, the semantics are similar to

OnActiveSec= and related settings.

Note that timers do not necessarily expire at the precise time configured with this setting, as it is

subject to the AccuracySec= setting below.

May be specified more than once, in which case the timer unit will trigger whenever any of the

specified expressions elapse. Moreover calendar timers and monotonic timers (see above) may be

combined within the same timer unit.

If the empty string is assigned to any of these options, the list of timers is reset (both OnCalendar=

timers and monotonic timers, see above), and all prior assignments will have no effect.

AccuracySec=

Specify the accuracy the timer shall elapse with. Defaults to 1min. The timer is scheduled to elapse

within a time window starting with the time specified in OnCalendar=, OnActiveSec=, OnBootSec=,

OnStartupSec=, OnUnitActiveSec= or OnUnitInactiveSec= and ending the time configured with

AccuracySec= later. Within this time window, the expiry time will be placed at a host−specific,

randomized, but stable position that is synchronized between all local timer units. This is done in order

to optimize power consumption to suppress unnecessary CPU wake−ups. To get best accuracy, set this

option to 1us. Note that the timer is still subject to the timer slack configured via systemd-

system.conf(5)'s TimerSlackNSec= setting. See prctl(2) for details. To optimize power consumption,

make sure to set this value as high as possible and as low as necessary.

Note that this setting is primarily a power saving option that allows coalescing CPU wake−ups. It

should not be confused with RandomizedDelaySec= (see below) which adds a random value to the

time the timer shall elapse next and whose purpose is the opposite: to stretch elapsing of timer events

over a longer period to reduce workload spikes. For further details and explanations and how both

settings play together, see below.

RandomizedDelaySec=

Delay the timer by a randomly selected, evenly distributed amount of time between 0 and the specified

time value. Defaults to 0, indicating that no randomized delay shall be applied. Each timer unit will

determine this delay randomly before each iteration, and the delay will simply be added on top of the

next determined elapsing time. This is useful to stretch dispatching of similarly configured timer

ev ents over a certain amount time, to avoid that they all fire at the same time, possibly resulting in

resource congestion. Note the relation to AccuracySec= above: the latter allows the service manager to

coalesce timer events within a specified time range in order to minimize wakeups, the former does the

opposite: it stretches timer events over a time range, to make it unlikely that they fire simultaneously.

If RandomizedDelaySec= and AccuracySec= are used in conjunction, first the randomized delay is

added, and then the result is possibly further shifted to coalesce it with other timer events happening

on the system. As mentioned above AccuracySec= defaults to 1min and RandomizedDelaySec= to 0,

thus encouraging coalescing of timer events. In order to optimally stretch timer events over a certain

range of time, make sure to set RandomizedDelaySec= to a higher value, and AccuracySec=1us.

OnClockChange=, OnTimezoneChange=

These options take boolean arguments. When true, the service unit will be triggered when the system

clock (CLOCK_REALTIME) jumps relative to the monotonic clock (CLOCK_MONOTONIC), or

when the local system timezone is modified. These options can be used alone or in combination with

other timer expressions (see above) within the same timer unit. These options default to false.

Unit=

The unit to activate when this timer elapses. The argument is a unit name, whose suffix is not ".timer".

If not specified, this value defaults to a service that has the same name as the timer unit, except for the

suffix. (See above.) It is recommended that the unit name that is activated and the unit name of the

timer unit are named identically, except for the suffix.

systemd 245 3



SYSTEMD.TIMER(5) systemd.timer SYSTEMD.TIMER(5)

Persistent=

Takes a boolean argument. If true, the time when the service unit was last triggered is stored on disk.

When the timer is activated, the service unit is triggered immediately if it would have been triggered at

least once during the time when the timer was inactive. This is useful to catch up on missed runs of the

service when the system was powered down. Note that this setting only has an effect on timers

configured with OnCalendar=. Defaults to false.

Use systemctl clean −−what=state ... on the timer unit to remove the timestamp file maintained by

this option from disk. In particular, use this command before uninstalling a timer unit. See

systemctl(1) for details.

WakeSystem=

Takes a boolean argument. If true, an elapsing timer will cause the system to resume from suspend,

should it be suspended and if the system supports this. Note that this option will only make sure the

system resumes on the appropriate times, it will not take care of suspending it again after any work

that is to be done is finished. Defaults to false.

Note that this functionality requires privileges and is thus generally only available in the system

service manager.

Note that behaviour of monotonic clock timers (as configured with OnActiveSec=, OnBootSec=,

OnStartupSec=, OnUnitActiveSec=, OnUnitInactiveSec=, see above) is altered depending on this

option. If false, a monotonic clock is used that is paused during system suspend

(CLOCK_MONOTONIC), if true a different monotonic clock is used that continues advancing

during system suspend (CLOCK_BOOTTIME), see clock_getres(2) for details.

RemainAfterElapse=

Takes a boolean argument. If true, an elapsed timer will stay loaded, and its state remains queryable. If

false, an elapsed timer unit that cannot elapse anymore is unloaded. Turning this off is particularly

useful for transient timer units that shall disappear after they first elapse. Note that this setting has an

effect on repeatedly starting a timer unit that only elapses once: if RemainAfterElapse= is on, it will

not be started again, and is guaranteed to elapse only once. However, if RemainAfterElapse= is off, it

might be started again if it is already elapsed, and thus be triggered multiple times. Defaults to yes.

SEE ALSO
systemd(1), systemctl(1), systemd.unit(5), systemd.service(5), systemd.time(7), systemd.directives(7),

systemd-system.conf(5), prctl(2)

systemd 245 4


