
TIMERFD_CREATE(2) Linux Programmer’s Manual TIMERFD_CREATE(2)

NAME
timerfd_create, timerfd_settime, timerfd_gettime − timers that notify via file descriptors

SYNOPSIS
#include <sys/timerfd.h>

int timerfd_create(int clockid , int flags);

int timerfd_settime(int fd , int flags,

const struct itimerspec *new_value,

struct itimerspec *old_value);

int timerfd_gettime(int fd , struct itimerspec *curr_value);

DESCRIPTION
These system calls create and operate on a timer that delivers timer expiration notifications via a file de-

scriptor. They provide an alternative to the use of setitimer(2) or timer_create(2), with the advantage that

the file descriptor may be monitored by select(2), poll(2), and epoll(7).

The use of these three system calls is analogous to the use of timer_create(2), timer_settime(2), and

timer_gettime(2). (There is no analog of timer_getoverrun(2), since that functionality is provided by

read(2), as described below.)

timerfd_create()

timerfd_create() creates a new timer object, and returns a file descriptor that refers to that timer. The

clockid argument specifies the clock that is used to mark the progress of the timer, and must be one of the

following:

CLOCK_REALTIME

A settable system-wide real-time clock.

CLOCK_MONOTONIC

A nonsettable monotonically increasing clock that measures time from some unspecified point in

the past that does not change after system startup.

CLOCK_BOOTTIME (Since Linux 3.15)

Like CLOCK_MONOTONIC, this is a monotonically increasing clock. However, whereas the

CLOCK_MONOTONIC clock does not measure the time while a system is suspended, the

CLOCK_BOOTTIME clock does include the time during which the system is suspended. This

is useful for applications that need to be suspend-aware. CLOCK_REALTIME is not suitable

for such applications, since that clock is affected by discontinuous changes to the system clock.

CLOCK_REALTIME_ALARM (since Linux 3.11)

This clock is like CLOCK_REALTIME, but will wake the system if it is suspended. The caller

must have the CAP_WAKE_ALARM capability in order to set a timer against this clock.

CLOCK_BOOTTIME_ALARM (since Linux 3.11)

This clock is like CLOCK_BOOTTIME, but will wake the system if it is suspended. The caller

must have the CAP_WAKE_ALARM capability in order to set a timer against this clock.

The current value of each of these clocks can be retrieved using clock_gettime(2).

Starting with Linux 2.6.27, the following values may be bitwise ORed in flags to change the behavior of

timerfd_create():

TFD_NONBLOCK

Set the O_NONBLOCK file status flag on the open file description (see open(2)) referred

to by the new file descriptor. Using this flag saves extra calls to fcntl(2) to achieve the

same result.

TFD_CLOEXEC

Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the descrip-

tion of the O_CLOEXEC flag in open(2) for reasons why this may be useful.

In Linux versions up to and including 2.6.26, flags must be specified as zero.

Linux 2019-03-06 1



TIMERFD_CREATE(2) Linux Programmer’s Manual TIMERFD_CREATE(2)

timerfd_settime()

timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file descriptor fd .

The new_value argument specifies the initial expiration and interval for the timer. The itimerspec structure

used for this argument contains two fields, each of which is in turn a structure of type timespec:

struct timespec {

time_t tv_sec; /* Seconds */

long tv_nsec; /* Nanoseconds */

};

struct itimerspec {

struct timespec it_interval; /* Interval for periodic timer */

struct timespec it_value; /* Initial expiration */

};

new_value.it_value specifies the initial expiration of the timer, in seconds and nanoseconds. Setting either

field of new_value.it_value to a nonzero value arms the timer. Setting both fields of new_value.it_value to

zero disarms the timer.

Setting one or both fields of new_value.it_interval to nonzero values specifies the period, in seconds and

nanoseconds, for repeated timer expirations after the initial expiration. If both fields of new_value.it_inter-

val are zero, the timer expires just once, at the time specified by new_value.it_value.

By default, the initial expiration time specified in new_value is interpreted relative to the current time on

the timer’s clock at the time of the call (i.e., new_value.it_value specifies a time relative to the current value

of the clock specified by clockid). An absolute timeout can be selected via the flags argument.

The flags argument is a bit mask that can include the following values:

TFD_TIMER_ABSTIME

Interpret new_value.it_value as an absolute value on the timer’s clock. The timer will expire when

the value of the timer’s clock reaches the value specified in new_value.it_value.

TFD_TIMER_CANCEL_ON_SET

If this flag is specified along with TFD_TIMER_ABSTIME and the clock for this timer is

CLOCK_REALTIME or CLOCK_REALTIME_ALARM, then mark this timer as cancelable

if the real-time clock undergoes a discontinuous change (settimeofday(2), clock_settime(2), or

similar). When such changes occur, a current or future read(2) from the file descriptor will fail

with the error ECANCELED.

If the old_value argument is not NULL, then the itimerspec structure that it points to is used to return the

setting of the timer that was current at the time of the call; see the description of timerfd_gettime() follow-

ing.

timerfd_gettime()

timerfd_gettime() returns, in curr_value, an itimerspec structure that contains the current setting of the

timer referred to by the file descriptor fd .

The it_value field returns the amount of time until the timer will next expire. If both fields of this structure

are zero, then the timer is currently disarmed. This field always contains a relative value, regardless of

whether the TFD_TIMER_ABSTIME flag was specified when setting the timer.

The it_interval field returns the interval of the timer. If both fields of this structure are zero, then the timer

is set to expire just once, at the time specified by curr_value.it_value.

Operating on a timer file descriptor

The file descriptor returned by timerfd_create() supports the following operations:

read(2) If the timer has already expired one or more times since its settings were last modified using

timerfd_settime(), or since the last successful read(2), then the buffer given to read(2) returns an

unsigned 8-byte integer (uint64_t) containing the number of expirations that have occurred. (The

returned value is in host byte order—that is, the native byte order for integers on the host

Linux 2019-03-06 2



TIMERFD_CREATE(2) Linux Programmer’s Manual TIMERFD_CREATE(2)

machine.)

If no timer expirations have occurred at the time of the read(2), then the call either blocks until the

next timer expiration, or fails with the error EAGAIN if the file descriptor has been made non-

blocking (via the use of the fcntl(2) F_SETFL operation to set the O_NONBLOCK flag).

A read(2) fails with the error EINVAL if the size of the supplied buffer is less than 8 bytes.

If the associated clock is either CLOCK_REALTIME or CLOCK_REALTIME_ALARM, the

timer is absolute (TFD_TIMER_ABSTIME), and the flag TFD_TIMER_CANCEL_ON_SET

was specified when calling timerfd_settime(), then read(2) fails with the error ECANCELED if

the real-time clock undergoes a discontinuous change. (This allows the reading application to dis-

cover such discontinuous changes to the clock.)

poll(2), select(2) (and similar)

The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN flag) if one or

more timer expirations have occurred.

The file descriptor also supports the other file-descriptor multiplexing APIs: pselect(2), ppoll(2),

and epoll(7).

ioctl(2) The following timerfd-specific command is supported:

TFD_IOC_SET_TICKS (since Linux 3.17)

Adjust the number of timer expirations that have occurred. The argument is a pointer to a

nonzero 8-byte integer (uint64_t*) containing the new number of expirations. Once the

number is set, any waiter on the timer is woken up. The only purpose of this command is

to restore the expirations for the purpose of checkpoint/restore. This operation is avail-

able only if the kernel was configured with the CONFIG_CHECKPOINT_RESTORE

option.

close(2)

When the file descriptor is no longer required it should be closed. When all file descriptors associ-

ated with the same timer object have been closed, the timer is disarmed and its resources are freed

by the kernel.

fork(2) semantics

After a fork(2), the child inherits a copy of the file descriptor created by timerfd_create(). The file de-

scriptor refers to the same underlying timer object as the corresponding file descriptor in the parent, and

read(2)s in the child will return information about expirations of the timer.

execve(2) semantics

A file descriptor created by timerfd_create() is preserved across execve(2), and continues to generate timer

expirations if the timer was armed.

RETURN VALUE
On success, timerfd_create() returns a new file descriptor. On error, −1 is returned and errno is set to indi-

cate the error.

timerfd_settime() and timerfd_gettime() return 0 on success; on error they return −1, and set errno to in-

dicate the error.

ERRORS
timerfd_create() can fail with the following errors:

EINVAL

The clockid argument is neither CLOCK_MONOTONIC nor CLOCK_REALTIME;

EINVAL

flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE

The per-process limit on the number of open file descriptors has been reached.

Linux 2019-03-06 3



TIMERFD_CREATE(2) Linux Programmer’s Manual TIMERFD_CREATE(2)

ENFILE

The system-wide limit on the total number of open files has been reached.

ENODEV

Could not mount (internal) anonymous inode device.

ENOMEM

There was insufficient kernel memory to create the timer.

timerfd_settime() and timerfd_gettime() can fail with the following errors:

EBADF

fd is not a valid file descriptor.

EFAULT

new_value, old_value, or curr_value is not valid a pointer.

EINVAL

fd is not a valid timerfd file descriptor.

timerfd_settime() can also fail with the following errors:

EINVAL

new_value is not properly initialized (one of the tv_nsec falls outside the range zero to

999,999,999).

EINVAL

flags is invalid.

VERSIONS
These system calls are available on Linux since kernel 2.6.25. Library support is provided by glibc since

version 2.8.

CONFORMING TO
These system calls are Linux-specific.

BUGS
Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).

EXAMPLE
The following program creates a timer and then monitors its progress. The program accepts up to three

command-line arguments. The first argument specifies the number of seconds for the initial expiration of

the timer. The second argument specifies the interval for the timer, in seconds. The third argument speci-

fies the number of times the program should allow the timer to expire before terminating. The second and

third command-line arguments are optional.

The following shell session demonstrates the use of the program:

$ a.out 3 1 100

0.000: timer started

3.000: read: 1; total=1

4.000: read: 1; total=2

ˆZ # type control-Z to suspend the program

[1]+ Stopped ./timerfd3_demo 3 1 100

$ fg # Resume execution after a few seconds

a.out 3 1 100

9.660: read: 5; total=7

10.000: read: 1; total=8

11.000: read: 1; total=9

ˆC # type control-C to suspend the program

Program source

#include <sys/timerfd.h>

Linux 2019-03-06 4



TIMERFD_CREATE(2) Linux Programmer’s Manual TIMERFD_CREATE(2)

#include <time.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <stdint.h> /* Definition of uint64_t */

#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void

print_elapsed_time(void)

{

static struct timespec start;

struct timespec curr;

static int first_call = 1;

int secs, nsecs;

if (first_call) {

first_call = 0;

if (clock_gettime(CLOCK_MONOTONIC, &start) == −1)

handle_error("clock_gettime");

}

if (clock_gettime(CLOCK_MONOTONIC, &curr) == −1)

handle_error("clock_gettime");

secs = curr.tv_sec − start.tv_sec;

nsecs = curr.tv_nsec − start.tv_nsec;

if (nsecs < 0) {

secs−−;

nsecs += 1000000000;

}

printf("%d.%03d: ", secs, (nsecs + 500000) / 1000000);

}

int

main(int argc, char *argv[])

{

struct itimerspec new_value;

int max_exp, fd;

struct timespec now;

uint64_t exp, tot_exp;

ssize_t s;

if ((argc != 2) && (argc != 4)) {

fprintf(stderr, "%s init−secs [interval−secs max−exp]\n",

argv[0]);

exit(EXIT_FAILURE);

}

if (clock_gettime(CLOCK_REALTIME, &now) == −1)

handle_error("clock_gettime");

/* Create a CLOCK_REALTIME absolute timer with initial

Linux 2019-03-06 5



TIMERFD_CREATE(2) Linux Programmer’s Manual TIMERFD_CREATE(2)

expiration and interval as specified in command line */

new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);

new_value.it_value.tv_nsec = now.tv_nsec;

if (argc == 2) {

new_value.it_interval.tv_sec = 0;

max_exp = 1;

} else {

new_value.it_interval.tv_sec = atoi(argv[2]);

max_exp = atoi(argv[3]);

}

new_value.it_interval.tv_nsec = 0;

fd = timerfd_create(CLOCK_REALTIME, 0);

if (fd == −1)

handle_error("timerfd_create");

if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == −1)

handle_error("timerfd_settime");

print_elapsed_time();

printf("timer started\n");

for (tot_exp = 0; tot_exp < max_exp;) {

s = read(fd, &exp, sizeof(uint64_t));

if (s != sizeof(uint64_t))

handle_error("read");

tot_exp += exp;

print_elapsed_time();

printf("read: %llu; total=%llu\n",

(unsigned long long) exp,

(unsigned long long) tot_exp);

}

exit(EXIT_SUCCESS);

}

SEE ALSO
ev entfd(2), poll(2), read(2), select(2), setitimer(2), signalfd(2), timer_create(2), timer_gettime(2),

timer_settime(2), epoll(7), time(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 6


