
ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

NAME
zshzftpsys − zftp function front−end

DESCRIPTION
This describes the set of shell functions supplied with the source distribution as an interface to the zftp

builtin command, allowing you to perform FTP operations from the shell command line or within functions

or scripts. The interface is similar to a traditional FTP client (e.g. the ftp command itself, see ftp(1)), but as

it is entirely done within the shell all the familiar completion, editing and globbing features, and so on, are

present, and macros are particularly simple to write as they are just ordinary shell functions.

The prerequisite is that the zftp command, as described in zshmodules(1) , must be available in the version

of zsh installed at your site. If the shell is configured to load new commands at run time, it probably is:

typing ‘zmodload zsh/zftp’ will make sure (if that runs silently, it has worked). If this is not the case, it is

possible zftp was linked into the shell anyway: to test this, type ‘which zftp’ and if zftp is available you

will get the message ‘zftp: shell built−in command’.

Commands given directly with zftp builtin may be interspersed between the functions in this suite; in a few

cases, using zftp directly may cause some of the status information stored in shell parameters to become in-

valid. Note in particular the description of the variables $ZFTP_TMOUT, $ZFTP_PREFS and

$ZFTP_VERBOSE for zftp.

INSTALLATION
You should make sure all the functions from the Functions/Zftp directory of the source distribution are

available; they all begin with the two letters ‘zf’. They may already have been installed on your system;

otherwise, you will need to find them and copy them. The directory should appear as one of the elements

of the $fpath array (this should already be the case if they were installed), and at least the function zfinit

should be autoloaded; it will autoload the rest. Finally, to initialize the use of the system you need to call

the zfinit function. The following code in your .zshrc will arrange for this; assume the functions are stored

in the directory ˜/myfns:

fpath=(˜/myfns $fpath)

autoload −U zfinit

zfinit

Note that zfinit assumes you are using the zmodload method to load the zftp command. If it is already

built into the shell, change zfinit to zfinit −n. It is helpful (though not essential) if the call to zfinit appears

after any code to initialize the new completion system, else unnecessary compctl commands will be given.

FUNCTIONS
The sequence of operations in performing a file transfer is essentially the same as that in a standard FTP

client. Note that, due to a quirk of the shell’s getopts builtin, for those functions that handle options you

must use ‘−−’ rather than ‘−’ to ensure the remaining arguments are treated literally (a single ‘−’ is treated

as an argument).

Opening a connection

zfparams [host [user [password ...]]]

Set or show the parameters for a future zfopen with no arguments. If no arguments are given, the

current parameters are displayed (the password will be shown as a line of asterisks). If a host is

given, and either the user or password is not, they will be prompted for; also, any parameter given

as ‘?’ will be prompted for, and if the ‘?’ is followed by a string, that will be used as the prompt.

As zfopen calls zfparams to store the parameters, this usually need not be called directly.

A single argument ‘−’ will delete the stored parameters. This will also cause the memory of the

last directory (and so on) on the other host to be deleted.

zfopen [−1] [host [user [password [account]]]]

If host is present, open a connection to that host under username user with password password

(and, on the rare occasions when it is necessary, account account). If a necessary parameter is

missing or given as ‘?’ it will be prompted for. If host is not present, use a previously stored set of

parameters.

zsh 5.8 February 14, 2020 1

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

If the command was successful, and the terminal is compatible with xterm or is sun−cmd, a sum-

mary will appear in the title bar, giving the local host:directory and the remote host:directory;

this is handled by the function zftp_chpwd, described below.

Normally, the host, user and password are internally recorded for later re−opening, either by a

zfopen with no arguments, or automatically (see below). With the option ‘−1’, no information is

stored. Also, if an open command with arguments failed, the parameters will not be retained (and

any previous parameters will also be deleted). A zfopen on its own, or a zfopen −1, nev er alters

the stored parameters.

Both zfopen and zfanon (but not zfparams) understand URLs of the form ftp://host/path... as

meaning to connect to the host, then change directory to path (which must be a directory, not a

file). The ‘ftp://’ can be omitted; the trailing ‘/’ is enough to trigger recognition of the path. Note

prefixes other than ‘ftp:’ are not recognized, and that all characters after the first slash beyond host

are significant in path.

zfanon [−1] host

Open a connection host for anonymous FTP. The username used is ‘anonymous’. The password

(which will be reported the first time) is generated as user@host; this is then stored in the shell pa-

rameter $EMAIL_ADDR which can alternatively be set manually to a suitable string.

Directory management

zfcd [dir]

zfcd −

zfcd old new

Change the current directory on the remote server: this is implemented to have many of the fea-

tures of the shell builtin cd.

In the first form with dir present, change to the directory dir. The command ‘zfcd ..’ is treated

specially, so is guaranteed to work on non−UNIX servers (note this is handled internally by zftp).

If dir is omitted, has the effect of ‘zfcd ˜’.

The second form changes to the directory previously current.

The third form attempts to change the current directory by replacing the first occurrence of the

string old with the string new in the current directory.

Note that in this command, and indeed anywhere a remote filename is expected, the string which

on the local host corresponds to ‘˜’ is converted back to a ‘˜’ before being passed to the remote

machine. This is convenient because of the way expansion is performed on the command line be-

fore zfcd receives a string. For example, suppose the command is ‘zfcd ˜/foo’. The shell will ex-

pand this to a full path such as ‘zfcd /home/user2/pws/foo’. At this stage, zfcd recognises the ini-

tial path as corresponding to ‘˜’ and will send the directory to the remote host as ˜/foo, so that the

‘˜’ will be expanded by the server to the correct remote host directory. Other named directories of

the form ‘˜name’ are not treated in this fashion.

zfhere Change directory on the remote server to the one corresponding to the current local directory, with

special handling of ‘˜’ as in zfcd. For example, if the current local directory is ˜/foo/bar, then

zfhere performs the effect of ‘zfcd ˜/foo/bar’.

zfdir [−rfd] [−] [dir−options] [dir]

Produce a long directory listing. The arguments dir−options and dir are passed directly to the

server and their effect is implementation dependent, but specifying a particular remote directory

dir is usually possible. The output is passed through a pager given by the environment variable

$PAGER, or ‘more’ if that is not set.

The directory is usually cached for re−use. In fact, two caches are maintained. One is for use

when there is no dir−options or dir, i.e. a full listing of the current remote directory; it is flushed

when the current remote directory changes. The other is kept for repeated use of zfdir with the

same arguments; for example, repeated use of ‘zfdir /pub/gnu’ will only require the directory to

be retrieved on the first call. Alternatively, this cache can be re−viewed with the −r option. As

zsh 5.8 February 14, 2020 2

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

relative directories will confuse zfdir, the −f option can be used to force the cache to be flushed

before the directory is listed. The option −d will delete both caches without showing a directory

listing; it will also delete the cache of file names in the current remote directory, if any.

zfls [ls−options] [dir]

List files on the remote server. With no arguments, this will produce a simple list of file names for

the current remote directory. Any arguments are passed directly to the server. No pager and no

caching is used.

Status commands

zftype [type]

With no arguments, show the type of data to be transferred, usually ASCII or binary. With an ar-

gument, change the type: the types ‘A’ or ‘ASCII’ for ASCII data and ‘B’ or ‘BINARY’, ‘I’ or

‘IMAGE’ for binary data are understood case−insensitively.

zfstat [−v]

Show the status of the current or last connection, as well as the status of some of zftp’s status vari-

ables. With the −v option, a more verbose listing is produced by querying the server for its version

of events, too.

Retrieving files

The commands for retrieving files all take at least two options. −G suppresses remote filename expansion

which would otherwise be performed (see below for a more detailed description of that). −t attempts to set

the modification time of the local file to that of the remote file: see the description of the function zfrtime

below for more information.

zfget [−Gtc] file1 ...

Retrieve all the listed files file1 ... one at a time from the remote server. If a file contains a ‘/’, the

full name is passed to the remote server, but the file is stored locally under the name given by the

part after the final ‘/’. The option −c (cat) forces all files to be sent as a single stream to standard

output; in this case the −t option has no effect.

zfuget [−Gvst] file1 ...

As zfget, but only retrieve files where the version on the remote server is newer (has a later modifi-

cation time), or where the local file does not exist. If the remote file is older but the files have dif-

ferent sizes, or if the sizes are the same but the remote file is newer, the user will usually be

queried. With the option −s, the command runs silently and will always retrieve the file in either

of those two cases. With the option −v, the command prints more information about the files

while it is working out whether or not to transfer them.

zfcget [−Gt] file1 ...

As zfget, but if any of the local files exists, and is shorter than the corresponding remote file, the

command assumes that it is the result of a partially completed transfer and attempts to transfer the

rest of the file. This is useful on a poor connection which keeps failing.

Note that this requires a commonly implemented, but non−standard, version of the FTP protocol,

so is not guaranteed to work on all servers.

zfgcp [−Gt] remote−file local−file

zfgcp [−Gt] rfile1 ... ldir

This retrieves files from the remote server with arguments behaving similarly to the cp command.

In the first form, copy remote−file from the server to the local file local−file.

In the second form, copy all the remote files rfile1 ... into the local directory ldir retaining the same

basenames. This assumes UNIX directory semantics.

Sending files

zfput [−r] file1 ...

Send all the file1 ... given separately to the remote server. If a filename contains a ‘/’, the full file-

name is used locally to find the file, but only the basename is used for the remote file name.

zsh 5.8 February 14, 2020 3

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

With the option −r, if any of the files are directories they are sent recursively with all their subdi-

rectories, including files beginning with ‘.’. This requires that the remote machine understand

UNIX file semantics, since ‘/’ is used as a directory separator.

zfuput [−vs] file1 ...

As zfput, but only send files which are newer than their remote equivalents, or if the remote file

does not exist. The logic is the same as for zfuget, but reversed between local and remote files.

zfcput file1 ...

As zfput, but if any remote file already exists and is shorter than the local equivalent, assume it is

the result of an incomplete transfer and send the rest of the file to append to the existing part. As

the FTP append command is part of the standard set, this is in principle more likely to work than

zfcget.

zfpcp local−file remote−file

zfpcp lfile1 ... rdir

This sends files to the remote server with arguments behaving similarly to the cp command.

With two arguments, copy local−file to the server as remote−file.

With more than two arguments, copy all the local files lfile1 ... into the existing remote directory

rdir retaining the same basenames. This assumes UNIX directory semantics.

A problem arises if you attempt to use zfpcp lfile1 rdir, i.e. the second form of copying but with

two arguments, as the command has no simple way of knowing if rdir corresponds to a directory

or a filename. It attempts to resolve this in various ways. First, if the rdir argument is ‘.’ or ‘..’ or

ends in a slash, it is assumed to be a directory. Secondly, if the operation of copying to a remote

file in the first form failed, and the remote server sends back the expected failure code 553 and a

reply including the string ‘Is a directory’, then zfpcp will retry using the second form.

Closing the connection

zfclose Close the connection.

Session management

zfsession [−lvod] [sessname]

Allows you to manage multiple FTP sessions at once. By default, connections take place in a ses-

sion called ‘default’; by giving the command ‘zfsession sessname’ you can change to a new or ex-

isting session with a name of your choice. The new session remembers its own connection, as

well as associated shell parameters, and also the host/user parameters set by zfparams. Hence

you can have different sessions set up to connect to different hosts, each remembering the appro-

priate host, user and password.

With no arguments, zfsession prints the name of the current session; with the option −l it lists all

sessions which currently exist, and with the option −v it gives a verbose list showing the host and

directory for each session, where the current session is marked with an asterisk. With −o, it will

switch to the most recent previous session.

With −d, the given session (or else the current one) is removed; everything to do with it is com-

pletely forgotten. If it was the only session, a new session called ‘default’ is created and made

current. It is safest not to delete sessions while background commands using zftp are active.

zftransfer sess1:file1 sess2:file2

Transfer files between two sessions; no local copy is made. The file is read from the session sess1

as file1 and written to session sess2 as file file2; file1 and file2 may be relative to the current direc-

tories of the session. Either sess1 or sess2 may be omitted (though the colon should be retained if

there is a possibility of a colon appearing in the file name) and defaults to the current session; file2

may be omitted or may end with a slash, in which case the basename of file1 will be added. The

sessions sess1 and sess2 must be distinct.

The operation is performed using pipes, so it is required that the connections still be valid in a sub-

shell, which is not the case under versions of some operating systems, presumably due to a system

bug.

zsh 5.8 February 14, 2020 4

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

Bookmarks

The two functions zfmark and zfgoto allow you to ‘bookmark’ the present location (host, user and direc-

tory) of the current FTP connection for later use. The file to be used for storing and retrieving bookmarks

is given by the parameter $ZFTP_BMFILE; if not set when one of the two functions is called, it will be set

to the file .zfbkmarks in the directory where your zsh startup files live (usually ˜).

zfmark [bookmark]

If given an argument, mark the current host, user and directory under the name bookmark for later

use by zfgoto. If there is no connection open, use the values for the last connection immediately

before it was closed; it is an error if there was none. Any existing bookmark under the same name

will be silently replaced.

If not given an argument, list the existing bookmarks and the points to which they refer in the form

user@host:directory; this is the format in which they are stored, and the file may be edited di-

rectly.

zfgoto [−n] bookmark

Return to the location given by bookmark, as previously set by zfmark. If the location has user

‘ftp’ or ‘anonymous’, open the connection with zfanon, so that no password is required. If the

user and host parameters match those stored for the current session, if any, those will be used, and

again no password is required. Otherwise a password will be prompted for.

With the option −n, the bookmark is taken to be a nickname stored by the ncftp program in its

bookmark file, which is assumed to be ˜/.ncftp/bookmarks. The function works identically in

other ways. Note that there is no mechanism for adding or modifying ncftp bookmarks from the

zftp functions.

Other functions

Mostly, these functions will not be called directly (apart from zfinit), but are described here for complete-

ness. You may wish to alter zftp_chpwd and zftp_progress, in particular.

zfinit [−n]

As described above, this is used to initialize the zftp function system. The −n option should be

used if the zftp command is already built into the shell.

zfautocheck [−dn]

This function is called to implement automatic reopening behaviour, as described in more detail

below. The options must appear in the first argument; −n prevents the command from changing to

the old directory, while −d prevents it from setting the variable do_close, which it otherwise does

as a flag for automatically closing the connection after a transfer. The host and directory for the

last session are stored in the variable $zflastsession, but the internal host/user/password parame-

ters must also be correctly set.

zfcd_match prefix suffix

This performs matching for completion of remote directory names. If the remote server is UNIX,

it will attempt to persuade the server to list the remote directory with subdirectories marked, which

usually works but is not guaranteed. On other hosts it simply calls zfget_match and hence com-

pletes all files, not just directories. On some systems, directories may not even look like file-

names.

zfget_match prefix suffix

This performs matching for completion of remote filenames. It caches files for the current direc-

tory (only) in the shell parameter $zftp_fcache. It is in the form to be called by the −K option of

compctl, but also works when called from a widget−style completion function with prefix and suf-

fix set appropriately.

zfrglob varname

Perform remote globbing, as describes in more detail below. varname is the name of a variable

containing the pattern to be expanded; if there were any matches, the same variable will be set to

the expanded set of filenames on return.

zsh 5.8 February 14, 2020 5

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

zfrtime lfile rfile [time]

Set the local file lfile to have the same modification time as the remote file rfile, or the explicit time

time in FTP format CCYYMMDDhhmmSS for the GMT timezone. This uses the shell’s

zsh/datetime module to perform the conversion from GMT to local time.

zftp_chpwd

This function is called every time a connection is opened, or closed, or the remote directory

changes. This version alters the title bar of an xterm−compatible or sun−cmd terminal emulator

to reflect the local and remote hostnames and current directories. It works best when combined

with the function chpwd. In particular, a function of the form

chpwd() {

if [[−n $ZFTP_USER]]; then

zftp_chpwd

else

usual chpwd e.g put host:directory in title bar

fi

}

fits in well.

zftp_progress

This function shows the status of the transfer. It will not write anything unless the output is going

to a terminal; however, if you transfer files in the background, you should turn off progress reports

by hand using ‘zstyle ’:zftp:*’ progress none’. Note also that if you alter it, any output must be

to standard error, as standard output may be a file being received. The form of the progress meter,

or whether it is used at all, can be configured without altering the function, as described in the next

section.

zffcache

This is used to implement caching of files in the current directory for each session separately. It is

used by zfget_match and zfrglob.

MISCELLANEOUS FEATURES
Configuration

Various styles are available using the standard shell style mechanism, described in zshmodules(1). Briefly,

the command ‘zstyle ’:zftp:*’ style value ...’. defines the style to have value value; more than one value

may be given, although that is not useful in the cases described here. These values will then be used

throughout the zftp function system. For more precise control, the first argument, which gives a context in

which the style applies, can be modified to include a particular function, as for example ‘:zftp:zfget’: the

style will then have the given value only in the zfget function. Values for the same style in different con-

texts may be set; the most specific function will be used, where strings are held to be more specific than

patterns, and longer patterns and shorter patterns. Note that only the top level function name, as called by

the user, is used; calling of lower level functions is transparent to the user. Hence modifications to the title

bar in zftp_chpwd use the contexts :zftp:zfopen, :zftp:zfcd, etc., depending where it was called from. The

following styles are understood:

progress

Controls the way that zftp_progress reports on the progress of a transfer. If empty, unset, or

‘none’, no progress report is made; if ‘bar’ a growing bar of inverse video is shown; if ‘percent’

(or any other string, though this may change in future), the percentage of the file transferred is

shown. The bar meter requires that the width of the terminal be available via the $COLUMNS

parameter (normally this is set automatically). If the size of the file being transferred is not avail-

able, bar and percent meters will simply show the number of bytes transferred so far.

When zfinit is run, if this style is not defined for the context :zftp:*, it will be set to ‘bar’.

update Specifies the minimum time interval between updates of the progress meter in seconds. No update

is made unless new data has been received, so the actual time interval is limited only by

$ZFTP_TIMEOUT.

zsh 5.8 February 14, 2020 6

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

As described for progress, zfinit will force this to default to 1.

remote−glob

If set to ‘1’, ‘yes’ or ‘true’, filename generation (globbing) is performed on the remote machine

instead of by zsh itself; see below.

titlebar

If set to ‘1’, ‘yes’ or ‘true’, zftp_chpwd will put the remote host and remote directory into the ti-

tlebar of terminal emulators such as xterm or sun−cmd that allow this.

As described for progress, zfinit will force this to default to 1.

chpwd If set to ‘1’ ‘yes’ or ‘true’, zftp_chpwd will call the function chpwd when a connection is closed.

This is useful if the remote host details were put into the terminal title bar by zftp_chpwd and

your usual chpwd also modifies the title bar.

When zfinit is run, it will determine whether chpwd exists and if so it will set the default value for

the style to 1 if none exists already.

Note that there is also an associative array zfconfig which contains values used by the function system.

This should not be modified or overwritten.

Remote globbing

The commands for retrieving files usually perform filename generation (globbing) on their arguments; this

can be turned off by passing the option −G to each of the commands. Normally this operates by retrieving

a complete list of files for the directory in question, then matching these locally against the pattern supplied.

This has the advantage that the full range of zsh patterns (respecting the setting of the option EX-

TENDED_GLOB) can be used. However, it means that the directory part of a filename will not be ex-

panded and must be given exactly. If the remote server does not support the UNIX directory semantics, di-

rectory handling is problematic and it is recommended that globbing only be used within the current direc-

tory. The list of files in the current directory, if retrieved, will be cached, so that subsequent globs in the

same directory without an intervening zfcd are much faster.

If the remote−glob style (see above) is set, globbing is instead performed on the remote host: the server is

asked for a list of matching files. This is highly dependent on how the server is implemented, though typi-

cally UNIX servers will provide support for basic glob patterns. This may in some cases be faster, as it

avoids retrieving the entire list of directory contents.

Automatic and temporary reopening

As described for the zfopen command, a subsequent zfopen with no parameters will reopen the connection

to the last host (this includes connections made with the zfanon command). Opened in this fashion, the

connection starts in the default remote directory and will remain open until explicitly closed.

Automatic re−opening is also available. If a connection is not currently open and a command requiring a

connection is given, the last connection is implicitly reopened. In this case the directory which was current

when the connection was closed again becomes the current directory (unless, of course, the command given

changes it). Automatic reopening will also take place if the connection was close by the remote server for

whatever reason (e.g. a timeout). It is not available if the −1 option to zfopen or zfanon was used.

Furthermore, if the command issued is a file transfer, the connection will be closed after the transfer is fin-

ished, hence providing a one−shot mode for transfers. This does not apply to directory changing or listing

commands; for example a zfdir may reopen a connection but will leave it open. Also, automatic closure

will only ever happen in the same command as automatic opening, i.e a zfdir directly followed by a zfget

will never close the connection automatically.

Information about the previous connection is given by the zfstat function. So, for example, if that reports:

Session: default

Not connected.

Last session: ftp.bar.com:/pub/textfiles

then the command zfget file.txt will attempt to reopen a connection to ftp.bar.com, retrieve the file

/pub/textfiles/file.txt, and immediately close the connection again. On the other hand, zfcd .. will open the

zsh 5.8 February 14, 2020 7

ZSHZFTPSYS(1) General Commands Manual ZSHZFTPSYS(1)

connection in the directory /pub and leave it open.

Note that all the above is local to each session; if you return to a previous session, the connection for that

session is the one which will be reopened.

Completion

Completion of local and remote files, directories, sessions and bookmarks is supported. The older, com-

pctl−style completion is defined when zfinit is called; support for the new widget−based completion sys-

tem is provided in the function Completion/Zsh/Command/_zftp, which should be installed with the other

functions of the completion system and hence should automatically be available.

zsh 5.8 February 14, 2020 8

